Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.
This paper describes a decision‐support scheme (DSS) for mapping the area where economically important loss is likely to occur (the endangered area). It has been designed by the PRATIQUE project to help pest risk analysts address the numerous risk mapping challenges and decide on the most suitable methods to follow. The introduction to the DSS indicates the time and expertise that is needed, the data requirements and the situations when mapping the endangered areas is most useful. The DSS itself has four stages. In stage 1, the key factors that influence the endangered area are identified, the data are assembled and, where appropriate, maps of the key factors are produced listing any significant assumptions. In stage 2, methods for combining these maps to identify the area of potential establishment and the area at highest risk from pest impacts are described, documenting any assumptions and combination rules utilised. When possible and appropriate, Stage 3 can then be followed to show whether economic loss will occur in the area at highest risk and to identify the endangered area. As required, Stage 4, described elsewhere, provides techniques for producing a dynamic picture of the invasion process using a suite of spread models. To illustrate how the DSS functions, a maize pest, Diabrotica virgifera virgifera, and a freshwater invasive alien plant, Eichhornia crassipes, have been used as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.