We describe here a minimally invasive glucose biosensor based on a microneedle array electrode fabricated from an epoxy-based negative photoresist (SU8 50) and designed for continuous measurement in the dermal compartment with minimal pain. These minimally invasive, continuous monitoring sensor devices (MICoMS) were produced by casting the structures in SU8 50, crosslinking and then metallising them with platinum or silver to obtain the working and reference electrodes, respectively. The metallised microneedle array electrodes were subsequently functionalised by entrapping glucose oxidase in electropolymerised polyphenol (PP) film. Sensor performance in vitro showed that glucose concentrations down to 0.5 mM could be measured with a response times (T90) of 15 s. The effect of sterilisation by Co60 irradiation was evaluated. In preparation for further clinical studies, these sensors were tested in vivo in a healthy volunteer for a period of 3–6 h. The sensor currents were compared against point measurements obtained with a commercial capillary blood glucometer. The epoxy MICoMS devices showed currents values that could be correlated with these.
Graphical AbstractMicroneedle arrays for continuous glucose monitoring in dermal interstitial fluid
Analysis of sintering and bonding of ultrafine WC powder and stainless steel by Analysis of sintering and bonding of ultrafine WC powder and stainless steel by hot compaction diffusion bonding hot compaction diffusion bonding
Introduction: MicroRNA-21 (miRNA-21) and lncRNA SNHG1 (small nucleolar RNA host gene 1) are known to be aberrantly upregulated and promote tumor progression in various cancers. Nevertheless, very few studies have determined the roles of tissue and circulating miRNA-21 and SNHG1 in ESCC patients. Particularly, knowledge about the characteristics of miRNA-21 and SNHG1 expression and their correlations with survival rates, as well as their interaction with each other remains inadequate in ESCC. Methods: Thse expression level of miRNA-21 and SNHG1 of tissues, serum and cell lines were detected by qRT-PCR, and the characteristics of their expression and clinicopathology were analyzed. Then, the diagnostic and prognosis value of serum and tissue miRNA-21 and SNHG1 were evaluated, respectively. In addition, the interaction with each other between miRNA-21 and SNHG1, as well as the effect on ESCC cell proliferation were further clarified. Results: The expression level of miRNA-21 and SNHG1 are significantly upregulated in tissues, serum and cell lines of ESCC, and tissue miRNA-21 and SNHG1 significantly correlates with lymph node metastasis, TNM stage, tumor size, and poor overall survival in ESCC patients. The receiver operating characteristic (ROC) curves show that areas under the ROC curve (AUC) for serum miRNA-21 and SNHG1 are 0.928 and 0.850, respectively. Pearson correlation coefficient indicated that the expression levels of miRNA-21 and SNHG1 in frozen cancerous tissues are significantly associated with their respective serum levels. Further, Cox univariate and multivariate analyses reveal that miRNA-21 and SNHG1 are independent prognostic factors for overall survival (OS) and disease-free survival (DFS) in ESCC patients. In addition, our in vitro data revealed a novel regulatory pathway, in which miRNA-21 is probably a unidirectional upstream positive regulator of SNHG1 in ESCC cells, and the interaction between miRNA-21 and SNHG1 plays an important role in the proliferation of ESCC cells. Discussion: In summary, our data show that SNHG1 may be a novel downstream target of miRNA-21 and not vice versa in ESCC cells and contributes significantly toward the proliferation of ESCC cells. These findings suggest that miRNA-21 and SNHG1 may serve as potential diagnostic, prognostic biomarkers and therapeutic targets for ESCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.