This paper focuses on a rapid and nondestructive way to discriminate the geographical origin of Anxi-Tieguanyin tea by near-infrared (NIR) spectroscopy and chemometrics. 450 representative samples were collected from Anxi County, the original producing area of Tieguanyin tea, and another 120 Tieguanyin samples with similar appearance were collected from unprotected producing areas in China. All these samples were measured by NIR. The Stahel-Donoho estimates (SDE) outlyingness diagnosis was used to remove the outliers. Partial least squares discriminant analysis (PLSDA) was performed to develop a classification model and predict the authenticity of unknown objects. To improve the sensitivity and specificity of classification, the raw data was preprocessed to reduce unwanted spectral variations by standard normal variate (SNV) transformation, taking second-order derivatives (D2) spectra, and smoothing. As the best model, the sensitivity and specificity reached 0.931 and 1.000 with SNV spectra. Combination of NIR spectrometry and statistical model selection can provide an effective and rapid method to discriminate the geographical producing area of Anxi-Tieguanyin.
Oxidative stress has been implicated in the pathogenesis of various chronic diseases such as cardiovascular disease, cancer, coronary heart disease, and arthritis. The antioxidative bioactive macromolecules, as evidenced by substantial studies, can effectively scavenge reactive oxygen species (ROS) and free radicals or mediate the immune system of the body to regulate the redox level, arousing the concern of numerous researchers on their antioxidative activities. An overview was carried out in this paper emphasizing on the types, antioxidant activities, application fields, and preparation methods of antioxidative biomacromolecules, which is expected to provide theoretical basis for the development and utilization of antioxidative biomacromolecules, as well as their applications in the fields of biomedicine, functional foods and skin care products.
Dalian sea cucumber, Yantai sea cucumber, and Weihai sea cucumber, which belong to , are protected as geographical indications in China based on their high nutritional values and medical propertys. The 26 samples, including Dalian sea cucumbers (9 samples) in Liaoning province, Yantai sea cucumbers (9 samples), and Weihai sea cucumbers (8 samples) in Shandong province, were individually collected from the designated geographical sea areas and the genetic relationships and DNA polymorphisms were evaluated by random amplified polymorphic DNA technology and gene segments sequencing. The RAPD dendrogram showed that the genetic diversity of the three types of sea cucumbers was rich. The neighbor-joining tree shows that the genetic relationship of the samples from the adjacent sea areas is closer. It demonstrates that the gene characteristics of sea cucumbers from different sea areas were obvious and the genetic diversity analysis by RAPD-PCR can be used as a rapid method for geographical discrimination.
Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group (SDG) gene family, the full-length coding sequence (CDS) of CsSDG36 was cloned from the tea cultivar ‘Fuding Dabaicha’. Bioinformatics analysis showed that the open reading frame (ORF) of the CsSDG36 gene was 3138 bp, encoding 1045 amino acids and containing the conserved structural domains of PWWP, PHD, SET and PostSET. The CsSDG36 protein showed a close relationship to AtATX4 of the TRX subfamily, with a molecular weight of 118,249.89 Da, and a theoretical isoelectric point of 8.87, belonging to a hydrophilic protein without a transmembrane domain, probably located on the nucleus. The expression of CsSDG36 was not detected in the wild type, while it was clearly detected in the over-expression lines of Arabidopsis. Compared with the wild type, the over-expression lines exhibited lower hyperosmotic resistance by accelerating plant water loss, increasing reactive oxygen species (ROS) pressure, and increasing leaf stomatal density. RNA-seq analysis suggested that the CsSDG36 overexpression caused the differential expression of genes related to chromatin assembly, microtubule assembly, and leaf stomatal development pathways. qRT-PCR analysis revealed the significant down-regulation of stomatal development-related genes (BASL, SBT1.2(SDD1), EPF2, TCX3, CHAL, TMM, SPCH, ERL1, and EPFL9) in the overexpression lines. This study provides a novel sight on the function of histone methyltransferase CsSDG36 under drought stress.
Diarrheagenic Escherichia coli (DEC) causes human diarrhea symptom in both healthy and immunocompromised individuals. An auto-microfluidic thin-film chip (AMTC) instrument integrating one-step multiplex PCR (mPCR) with reverse dot blot hybridization (RDBH) was developed for high-throughput detection of DEC. The novel mPCR method was developed by designing 14 specific primers and corresponding probes. 14 indexes including an endogenous gene (uidA) and 13 pathogenic genes (stx1, stx2, escV, ipaH, invE, estB, lt, pic, aggR, astA, bfpB, sth and stp) of DEC were detected. This one-step mPCR + RDBH approach is useful for simultaneous detection of numerous target genes in a single sample, whose specificity and availability have been confirmed on the positive control of 11 DEC strains. In addition, with 300 diarrheal stool samples being detected by this method, 21 were found to contain five major DEC strains. Compared with monoplex PCR and previous one-step mPCR approach, this method could detect ipaH and estB, and compared with current commercial kit, the relevance ratio of DEC detected by the AMTC method was increased by 1% in stool samples. Furthermore, the novel integration AMTC device could be a valuable detection tool for categorization of E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.