We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination.
A novel family of organoboron compounds 1-4 with bright near-infrared (NIR) emissions in the crystalline state was synthesized. They show a morphology-dependent emission "ON" and "OFF" feature and volatile acid/base-induced fluorescence saltation which allow the realization of reversible solid-state fluorescence switching in the NIR region by totally different procedures: mechanical grinding/solvent annealing and acid/base vapor fuming.
The successful preparation of two-dimensional (2D) single crystals can promote the development of organic optoelectronic devices with excellent performance. A Schiff base compound salicylidene(4-dimethylamino)aniline with aggregation induced emission (AIE) property was employed as the building block to fabricate 2D thin single crystal plates with scales from around 50 μm to 1.5 cm. Yellow and red emissive polymorphs were concomitantly obtained during crystallization. The single-crystal-to-single-crystal (SC-to-SC) transformation from yellow polymorph to red one was demonstrated. Furthermore, both polymorphs exhibited amplified spontaneous emission (ASE) properties. Interestingly, the red polymorph displayed size-dependent ASE characteristics. The larger red polymorph showed near-infrared ASE with maximum at 706 nm, whereas the smaller one presented red ASE with maximum at 610 nm. These results suggest that the different scale single crystalline thin films with perfect optoelectronic properties may be fabricated by using the organic molecules with 2D assembly feature.
A tin(II) tungstosilicate derivative K(11)H[Sn(4)(SiW(9)O(34))(2)]·25H(2)O with four sandwiched Sn(2+) cations was prepared by reaction of SnCl(2), KCl and Na(10)[α-SiW(9)O(34)]·xH(2)O. Visible-light photocatalytic H(2) evolution activity was observed with Pt nanoparticles as co-catalyst and methanol as sacrificial agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.