Intelligent fashion outfit composition becomes more and more popular in these years. Some deep learning based approaches reveal competitive composition recently. However, the unexplainable characteristic makes such deep learning based approach cannot meet the the designer, businesses and consumers' urge to comprehend the importance of different attributes in an outfit composition. To realize interpretable and customized fashion outfit compositions, we propose a partitioned embedding network to learn interpretable representations from clothing items. The overall network architecture consists of three components: an auto-encoder module, a supervised attributes module and a multi-independent module. The auto-encoder module serves to encode all useful information into the embedding. In the supervised attributes module, multiple attributes labels are adopted to ensure that different parts of the overall embedding correspond to different attributes. In the multi-independent module, adversarial operation are adopted to fulfill the mutually independent constraint. With the interpretable and partitioned embedding, we then construct an outfit composition graph and an attribute matching map. Given specified attributes description, our model can recommend a ranked list of outfit composition with interpretable matching scores. Extensive experiments demonstrate that 1) the partitioned embedding have unmingled parts which corresponding to different attributes and 2) outfits recommended by our model are more desirable in comparison with the existing methods.
Intelligent fashion outfit composition has become more popular in recent years. Some deep-learning-based approaches reveal competitive composition. However, the uninterpretable characteristic makes such a deep-learning-based approach fail to meet the businesses’, designers’, and consumers’ urges to comprehend the importance of different attributes in an outfit composition. To realize interpretable and intelligent multi-item fashion outfit compositions, we propose a partitioned embedding network to learn interpretable embeddings from clothing items. The network contains two vital components: attribute partition module and partition adversarial module. In the attribute partition module, multiple attribute labels are adopted to ensure that different parts of the overall embedding correspond to different attributes. In the partition adversarial module, adversarial operations are adopted to achieve the independence of different parts. With the interpretable and partitioned embedding, we then construct an outfit-composition graph and an attribute matching map. Extensive experiments demonstrate that (1) the partitioned embedding have unmingled parts that correspond to different attributes and (2) outfits recommended by our model are more desirable in comparison with the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.