In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.
Down sydrome (DS) is a relatively frequent chromosomal disorder, which has no safe and effective method of prenatal diagnosis to date. The present study was designed to identify DS biomarkers. We quantified the changes in the umbilical cord blood protein levels between DS-affected and healthy (control) pregnant females using isobaric tags for relative and absolute quantification (iTRAQ) and Gene Ontology (GO) analysis. A total of 505 proteins were identified, and of these, five proteins showed significantly different concentrations between the DS and the control group. These proteins may thus be relevant to DS and constitute potential DS biomarkers.
Systemic lupus erythematosus (SLE) is a chronic, potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range of self-antigens. To investigate the role of the 5-hmC DNA modification with regard to the onset of SLE, we compared the levels 5-hmC between SLE patients and normal controls. Whole blood was obtained from patients, and genomic DNA was extracted. Using the hMeDIP-chip analysis and validation by quantitative RT-PCR (RT-qPCR), we identified the differentially hydroxymethylated regions that are associated with SLE. There were 1,701 genes with significantly different 5-hmC levels at the promoter region in the SLE patients compared with the normal controls. The CpG islands of 3,826 genes showed significantly different 5-hmC levels in the SLE patients compared with the normal controls. Out of the differentially hydroxymethylated genes, three were selected for validation, including TREX1, CDKN1A and CDKN1B. The hydroxymethylation levels of the three genes were confirmed by RT-qPCR. The results suggested that there were significant alterations of 5-hmC in SLE patients. Thus, these differentially hydroxymethylated genes may contribute to the pathogenesis of SLE. These findings show the significance of 5-hmC as a potential biomarker or promising target for epigenetic-based SLE therapies.
Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults and the second leading cause of end-stage renal disease due to primary glomerulonephritis. The aim of the present study was to identify potential biomarkers of MN and further characterize these proteins by Gene Ontology (GO) analysis. Isobaric tags for relative and absolute quantification were used to compare the protein levels in tissues from MN patients and healthy individuals, and the combined samples were subsequently separated by specialized communications exchange. Mass spectrometry data acquisition was conducted using a 4800 Plus MALDI TOF/TOF tandem mass spectrometry device, and the results were subjected to statistical analysis. A total of 1,903 proteins were identified, with 423 proteins exhibiting a difference of >1.5-fold compared with the control group. Of these, 202 proteins were upregulated, while 221 proteins were downregulated. In conclusion, GO enrichment analysis revealed that the differentially expressed proteins were primarily mapped to the following GO terms: ‘Immune response’, ‘immune effector process’, ‘activation of immune response’ and ‘positive regulation of immune system process’. The affected proteins may be associated with the pathogenesis of MN; thus, may represent candidate MN biomarkers.
Abstract. Immunoglobulin (Ig) A nephropathy (IgAN) is the most common form of glomerulonephritis. In clinical practice, it is difficult to monitor the repeating relapse in patients suffering from IgAN, which usually occurs within 10 years of end-stage renal disease. In order to identify and quantify the total protein content in the renal tissue of patients with IgAN, isobaric tags for relative and absolute quantification (iTRAQ) technology was performed. iTRAQ coupled with multiple chromatographic fractionation and tandem mass spectrometry was used to analyze the total protein of normal renal tissue in IgAN and healthy patients. The individual proteins were identified by the Mascot search engine and any that were differentially expressed were monitored. A total of 574 different proteins were identified, and 287 proteins were up-or downregulated by >1 fold alteration in levels. The results showed that iTRAQ-based quantitative proteomic technology for the identification and relative quantitation of the renal tissue proteome is efficiently applicable. The differential expression of the proteome profiles for IgAN patients was determined. Further studies using large cohorts of patient samples with long-term clinical follow-up data should be conducted to evaluate the usefulness of the pathogenesis and novel biomarker candidates of IgAN, which may develop a novel technique for the diagnosis of IgAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.