In this study, a transferrin/folic acid double-targeting graphene oxide drug delivery system loaded with doxorubicin was designed. Graphene oxide was prepared by ultrasound improved Hummers method and was modified with Pluronic F68, folic acid, and transferrin to decrease its toxicity and to allow dual-targeting. The results show that the double target drug delivery system (TFGP*DOX) has good and controllable drug delivery performance with no toxicity. Moreover, TFGP*DOX has a better inhibitory effect on SMMC-7721 cells than does a single target drug delivery system (FGP*DOX). The results of drug release analysis and cell inhibition studies showed that TFGP*DOX has a good sustained release function that can reduce the drug release rate in blood circulation over time and improve the local drug concentration in or near a targeted tumor. Therefore, the drug loading system (TFGP*DOX) has potential application value in the treatment of hepatocellular carcinoma.
The frequency of ground motions during earthquakes is typically in the order of a few hertz. As the earthquake-induced liquefaction of soils is widely assessed by performing laboratory tests, it is necessary to consider various loading frequencies generated by real earthquakes. The effect of loading frequency has been studied by cyclic triaxial tests; however, it has rarely been investigated by cyclic direct simple shear tests, which are more similar to the cyclic loading conditions associated with earthquakes. In this study, a series of cyclic direct simple shear tests were performed on clean sand with a relative density (Dr) of 40% (loose sand) and 80% (dense sand), obtained from Nakdong River. The parameters considered are the initial vertical effective stresses (σv0′ = 50, 100, and 200 kPa) and the loading frequencies (f = 0.05, 0.1, 0.5, and 1 Hz) to evaluate the effect of the loading frequency on the liquefaction prediction of clean sand. The results showed that the liquefaction resistance of the sand increases with the increase in the loading frequency, regardless of the initial vertical effective stress and relative density. When the loading frequency increased from 0.1 to 0.5 or 1 Hz, the maximum increase in the cyclic resistances were 15%, and 19% for loose and dense sand, respectively. For a given loading frequency, the liquefaction resistance of the sand decreased when the initial vertical effective stress increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.