Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker's intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies. In this paper, we consider the problem of DAR from the viewpoint of extending richer Conditional Random Field (CRF) structural dependencies without abandoning end-to-end training. We incorporate hierarchical semantic inference with memory mechanism on the utterance modeling. We then extend structured attention network to the linear-chain conditional random field layer which takes into account both contextual utterances and corresponding dialogue acts. The extensive experiments on two major benchmark datasets Switchboard Dialogue Act (SWDA) and Meeting Recorder Dialogue Act (MRDA) datasets show that our method achieves better performance than other state-of-the-art solutions to the problem. It is a remarkable fact that our method is nearly close to the human annotator's performance on SWDA within 2% gap.
Community-based question answering(CQA) services have arisen as a popular knowledge sharing pattern for netizens. With abundant interactions among users, individuals are capable of obtaining satisfactory information. However, it is not effective for users to attain answers within minutes. Users have to check the progress over time until the satisfying answers submitted. We address this problem as a user personalized satisfaction prediction task. Existing methods usually exploit manual feature selection. It is not desirable as it requires careful design and is labor intensive. In this paper, we settle this issue by developing a new multiple instance deep learning framework. Specifically, in our settings, each question follows a weakly supervised learning (multiple instance learning) assumption, where its obtained answers can be regarded as instance sets and we define the question resolved with at least one satisfactory answer. We thus design an efficient framework exploiting multiple instance learning property with deep learning tactic to model the question-answer pairs relevance and rank the asker's satisfaction possibility. Extensive experiments on large-scale datasets from Stack Exchange demonstrate the feasibility of our proposed framework in predicting askers personalized satisfaction. Our framework can be extended to numerous applications such as UI satisfaction Prediction, multi-armed bandit problem, expert finding and so on.
Machine Comprehension (MC) is a challenging task in Natural Language Processing field, which aims to guide the machine to comprehend a passage and answer the given question. Many existing approaches on MC task are suffering the inefficiency in some bottlenecks, such as insufficient lexical understanding, complex question-passage interaction, incorrect answer extraction and so on. In this paper, we address these problems from the viewpoint of how humans deal with reading tests in a scientific way. Specifically, we first propose a novel lexical gating mechanism to dynamically combine the words and characters representations. We then guide the machines to read in an interactive way with attention mechanism and memory network. Finally we add a checking layer to refine the answer for insurance. The extensive experiments on two popular datasets SQuAD and TriviaQA show that our method exceeds considerable performance than most stateof-the-art solutions at the time of submission.
To solve the problem of poor performance of deep neural network models due to insufficient data, a simple yet effective interpolation-based data augmentation method is proposed: MSMix (Manifold Swap Mixup). This method feeds two different samples to the same deep neural network model, and then randomly select a specific layer and partially replace hidden features at that layer of one of the samples by the counterpart of the other. The mixed hidden features are fed to the model and go through the rest of the network. Two different selection strategies are also proposed to obtain richer hidden representation. Experiments are conducted on three Chinese intention recognition datasets, and the results show that the MSMix method achieves better results than other methods in both full-sample and small-sample configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.