The currently used anti-cancer therapies work by killing cancer cells but result in adverse effects and resistance to treatment, which accelerates aging and causes damage to normal somatic cells. On one hand, chicken and zebrafish embryos can reprogram cancer cells towards a non-tumorigenic phenotype; however, they cannot be used in the clinical practice. On the other hand, embryonic stem cells (ESCs) mimic the early embryonic microenvironment and are easily available. We investigated the therapeutic efficacy of the ESC microenvironment (ESCMe) in human uveal melanoma in vitro and in vivo . Methods : Human uveal melanoma C918 cells co-cultured with ESCs were used to measure the levels of mRNA and protein of the phosphoinositide 3-kinase (PI3K) pathway. Cell proliferation, invasiveness, and tumorigenicity of C918 cells were also analyzed. To mimic the tumor microenvironment in vivo , we co-cultured C918 cells and normal somatic cells with ESCs in a co-culture system and evaluated the therapeutic potential of ESCMe in both cell types. For an in vivo study, a mouse tumor model was used to test the safety and efficacy of the transplanted ESC. Elimination of the transplanted ESCs in mice was carried out by using the ESC-transfected with a thymidine kinase suicidal gene followed by administration of ganciclovir to prevent the formation of teratomas by ESCs. Results : In vitro studies confirmed that ESCMe inhibits the proliferation, invasiveness, and tumorigenicity of C918 cells, and the PI3K agonist abolished these effects. ESCMe suppressed the various malignant behaviors of uveal melanoma cells but enhanced the proliferation of normal somatic cells both in vitro and in vivo . Further, we demonstrated that ESCMe suppressed the PI3K pathway in tumor cells but activated in somatic cells. Conclusions : The ESCMe can effectively suppress the malignant phenotype of uveal melanoma cells and modulate the tumor-promoting aging environment by preventing the senescence of normal cells through the bidirectional regulation of the PI3K signaling. Our results suggest that ESC transplantation can serve as an effective and safe approach for treating cancer without killing cells.
ObjectiveTeam-based learning (TBL) is an increasingly popular teaching method in medical education. However, TBL hasn’t been well-studied in the ophthalmology clerkship context. This study was to examine the impact of modified TBL in such context and to assess the student evaluations of TBL.MethodsNinety-nine students of an 8-year clinical medicine program from Zhongshan Ophthalmic Centre, Sun Yat-sen University, were randomly divided into four sequential units and assigned to six teams with the same faculty. The one-week ophthalmology clerkship module included traditional lectures, gross anatomy and a TBL module. The effects of the TBL module on student performance were measured by the Individual Readiness Assurance Test (IRAT), the Group Readiness Assurance Test (GRAT), the Group Application Problem (GAP) and final examination scores (FESs). Students’ evaluations of TBL were measured by a 16-item questionnaire. IRAT and GRAT scores were compared using a paired t-test. One-way analysis of variance (ANOVA) and subgroup analysis compared the effects among quartiles that were stratified by the Basic Ophthalmology Levels (BOLs). The BOLs were evaluated before the ophthalmology clerkship.ResultsIn TBL classes, the GRAT scores were significantly higher than the IRAT scores in both the full example and the BOL-stratified groups. It highlighted the advantages of TBL compared to the individual learning. Quartile-stratified ANOVA comparisons showed significant differences at FES scores (P < 0.01). In terms to IRAT, GRAT and GAP scores, there was no significant result. Moreover, IRAT scores only significantly differed between the first and fourth groups. The FES scores of the first three groups are significantly higher than the fourth group. Gender-specific differences were significant in FES but not the IRAT. Overall, 57.65% of student respondents agreed that TBL was helpful. Male students tended to rate TBL higher than female students.ConclusionThe application of modified TBL to the ophthalmology clerkship curriculum improved students’ performance and increased students’ engagement and satisfaction. TBL should be further optimized and developed to enhance the educational outcomes among multi-BOLs medical students.
The embryonic stem cell (ESC) microenvironment can promote the proliferation of terminal cells and reduce the invasiveness of tumor cells. However, implanting ESCs directly in vivo can result in tumorigenicity, immune rejection after differentiation, and graft-versus-host reaction. Therefore, safety is very important in the clinical application of ESCs. We injected ESCs modified with a suicide gene into a leukemia mouse model through peripheral blood to observe the treatment effectiveness. In addition, according to the pre-test, we set the time point of differentiation after transplantation and then activated the suicide gene to kill the ESCs that we had initially implanted, hoping to avoid the risks mentioned earlier. Our results indicated that the body weight and survival rates of mice treated with an ESC microenvironment increased, and leukemic cells in peripheral blood and bone marrow decreased compared with untreated mice. There was no obvious teratoma in mice that received ESC therapy and induced the suicide gene at the proper time during the observation period, while an apparent teratoma was observed in the lungs of mice which received ESC therapy and never induced the suicide gene. Therefore, the ESC microenvironment can promote self-healing of the in vivo microenvironment. Inducing the suicide gene at the appropriate time can reduce or even avoid tumorigenicity and immune rejection after transplantation of ESCs in vivo and improve the safety of their clinical application.
Our previous work had found that telomerase rejuvenated in the cytoplasm of corneal epithelial cells cultured in embryonic stem cell-conditioned medium, the functional properties of stem-like corneal epithelial cells can be enhanced by co-culturing with embryonic stem cells (ESCs) via activation of the integrinβ1-FAK-PI3K/Akt signaling pathway. The goal of this study was to explore the potential molecular mechanisms of the ES micro-environment that enhance the stem cell-like phenotype and inhibit apoptosis in human limbal stem cells (LSC). The LSC were cultured in different media, either CnT-20 medium or CnT-20 +20% ES culture supernatant (ESC-CM). We observed that LSC cultured in ESC-CM had an increased proliferative capacity, greater serial passage capacity, higher colony-forming efficiency (CFE) and higher levels of stem cell-associated marker than those cultured in CnT-20. Compared with CnT-20, ESC-CM enhanced the undifferentiated status and inhibited apoptosis in the LSC by promoting the maintenance of telomerase activity, which could reduce the generation of reactive oxygen species (ROS), maintain the membrane potential (Δψm) at higher levels and reduce the expression of the p21 protein. Our findings indicated that ESC-CM system induced LSC to maintain a stem cell phenotype and inhibit the process of apoptosis. These effects might partially be achieved via the telomerase-p21-mitochondrial axis and the activation of the FAK/Wnt signaling pathways. This study may have high impact and clinic implication on the expansion of LSC in regenerative medicine, especially for ocular surface reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.