A highly selective ratiometric fluorescent chemodosimeter derived from 4-hydroxynaphthalimide was designed and synthesized to image palladium species in living cells by virtue of a palladium-catalyzed depropargylation reaction, and it could monitor three typical palladium species (0, + 2 and + 4) without additional reagents.
A simple but highly selective colorimetric and ratiometric fluorescent chemodosimeter was designed and synthesized to detect fluoride ions (F(-)) in aqueous solution and living cells by virtue of the strong affinity of F(-) toward silicon.
Lightweight polymeric foam is highly attractive as thermal insulation materials for energy-saving buildings but is plagued by its inherent flammability. Fire-retardant coatings are suggested as an effective means to solve this problem. However, most of the existing fire-retardant coatings suffer from poor interfacial adhesion to polymeric foam during use. In nature, snails and tree frogs exhibit strong adhesion to a variety of surfaces by interfacial hydrogen-bonding and mechanical interlocking, respectively. Inspired by their adhesion mechanisms, we herein rationally design fire-retardant polymeric coatings with phase-separated micro/nanostructures via a facile radical copolymerization of hydroxyethyl acrylate (HEA) and sodium vinylsulfonate (VS). The resultant waterborne poly(VSco-HEA) copolymers exhibit strong interfacial adhesion to rigid polyurethane (PU) foam and other substrates, better than most of the current adhesives because of the combination of interfacial hydrogen-bonding and mechanical interlocking. Besides a superhydrophobic feature, the poly(VS-co-HEA)-coated PU foam can self-extinguish a flame, exhibiting a desired V-0 rating during vertical burning and low heat and smoke release due to its high charring capability, which is superior to its previous counterparts. Moreover, the foam thermal insulation is well-preserved and agrees well with theoretical calculations. This work offers a facile biomimetic strategy for creating advanced adhesive fire-retardant polymeric coatings for many flammable substrates.
Sulfate radical‐based advanced oxidation processes (SR‐AOPs) are attracting considerable attention due to the high oxidizing ability of sulfate radical to degrade organic pollutants in aqueous environments. In this study, the degradation of antibiotics amoxicillin using SR‐AOPs was investigated. This process is based on the generation of sulfate radicals through Co3O4‐mediated activation of peroxymonosulfate (PMS). Several parameters affecting antibiotics degradation such as Co3O4, PMS, pH, and temperature were investigated. The optimal conditions were found to be as follows: oxone concentration 0.01 mol·L −1, Co3O4 dosage 0.06 g, pH 6.0, reaction temperature 60°C, and reaction time 45 min. Under these optimum conditions, it was found that the chemical oxygen demand (COD) removal efficiency of 91.01% was achieved. The effect of ultrasound in the Co3O4/PMS system for amoxicillin degradation was also studied. © 2012 American Institute of Chemical Engineers Environ Prog, 32: 193‐197, 2013
such as aerospace, transportation, and biological engineering. [2,3] In general, the combination of great toughness, large ductility, and high strength in polymers is essential for enabling their real-world applications. However, existing strengthening and/or toughening strategies fail to realize the desirable mechanical combination in polymers owing to mutually exclusive governing mechanisms between strength and modulus. [4] In addition, the ability to self-heal is another desirable yet key factor for extending their lifespan after damage, [5][6][7] whereas a good biocompatibility is a prerequisite for their practical applications as artificial tissues. For example, in addition to the lack of a selfhealing ability, existing artificial ligament materials usually suffer from lower ductility and/or toughness relative to natural counterparts. [8,9] Therefore, it has been highly attractive but remained a grand challenge to create strong, tough, and ductile polymeric materials that are also healable and biocompatible so far.Many natural materials such as nacre, [10,11] bones, [12] and spider silk fibers (SSF) [13] are valid examples of how the evolutionary forces address the issue of the trade-off between mechanical strength and stretchability. In particular, SSF exhibits an outstanding fracture toughness over 150 J g −1 and a large breaking strain (>50%) as well as high tensile strength (>1 GPa). [14] The unique mechanical combination has been revealed to originate from Lightweight polymeric materials are highly attractive platforms for many potential industrial applications in aerospace, soft robots, and biological engineering fields. For these real-world applications, it is vital for them to exhibit a desirable combination of great toughness, large ductility, and high strength together with desired healability and biocompatibility. However, existing material design strategies usually fail to achieve such a performance portfolio owing to their different and even mutually exclusive governing mechanisms. To overcome these hurdles, herein, for the first time a dynamic hydrogen-bonded nanoconfinement concept is proposed, and the design of highly stretchable and supratough biocompatible poly(vinyl alcohol) (PVA) with well-dispersed dynamic nanoconfinement phases induced by hydrogenbond (H-bond) crosslinking is demonstrated. Because of H-bond crosslinking and dynamic nanoconfinement, the as-prepared PVA nanocomposite film exhibits a world-record toughness of 425 ± 31 MJ m −3 in combination with a tensile strength of 98 MPa and a large break strain of 550%, representing the best of its kind and even outperforming most natural and artificial materials. In addition, the final polymer exhibits a good self-healing ability and biocompatibility. This work affords new opportunities for creating mechanically robust, healable, and biocompatible polymeric materials, which hold great promise for applications, such as soft robots and artificial ligaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.