To improve light usage, Ag and Cu were co-impregnated with nano-ZnO, and the mesoporous silica gel (meso-SiO2) was chosen as the carrier. The sol-gel method was used to successfully construct a composite photocatalyst with 3 percent Ag/0.1 percent Cu/nano-ZnO/meso-SiO2. For the evaluation of the photocatalytic activity of the as-prepared catalysts, Reactive Black 5 was used as a simulated organic pollutant in aqueous. The results revealed that uniform spherical nano-ZnO particles with a diameter of 10 nm were attached to the surface and mesopore of meso-SiO2. The average pore width and specific surface area of this composite were 7.06 nm and 305 m2.g-1, respectively. The optimal amount of loaded Ag and Cu were 3% and 0.1%, respectively, which resulted in around 100% removal of Reactive Black 5 after 280 min UV-light irradiation. The degradation process followed pseudo-first-order kinetics. Ag and Cu-loaded nano-ZnO/SiO2 could be advantageous for suppressing the recombination of photo-generated holes and electrons, thus improving the degradation efficiency. The constant of degradation rate and adsorption equilibrium of 3%Ag/0.1%Cu/nano-ZnO/meso-SiO2 were 0.049 min–1 and 2.14 L.g-1, respectively. After three reuses, the Ag/Cu/ZnO/meso-SiO2 photocatalyst remained very stable during the photocatalytic process with no loss of photocatalytic activity. According to the GC-MS results, a probable degradation mechanism was estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.