In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis.
Diffusion Tensor Imaging (DTI) has become an important MRI procedure to investigate the integrity of white matter in brain in vivo. DTI is estimated from a series of acquired Diffusion Weighted Imaging (DWI) volumes. DWI data suffers from inherent low SNR, overall long scanning time of multiple directional encoding with correspondingly large risk to encounter several kinds of artifacts. These artifacts can be too severe for a correct and stable estimation of the diffusion tensor. Thus, a quality control (QC) procedure is absolutely necessary for DTI studies. Currently, routine DTI QC procedures are conducted manually by visually checking the DWI data set in a gradient by gradient and slice by slice way. The results often suffer from low consistence across different data sets, lack of agreement of different experts, and difficulty to judge motion artifacts by qualitative inspection. Additionally considerable manpower is needed for this step due to the large number of images to QC, which is common for group comparison and longitudinal studies, especially with increasing number of diffusion gradient directions. We present a framework for automatic DWI QC. We developed a tool called DTIPrep which pipelines the QC steps with a detailed protocoling and reporting facility. And it is fully open source. This framework/tool has been successfully applied to several DTI studies with several hundred DWIs in our lab as well as collaborating labs in Utah and Iowa. In our studies, the tool provides a crucial piece for robust DTI analysis in brain white matter study.
In recent years, diffusion tensor imaging (DTI) has become the modality of choice to investigate white matter pathology in the developing brain. To study neonate Krabbe disease with DTI, we evaluate the performance of linear and non-linear DTI registration algorithms for atlas based fiber tract analysis. The DTI scans of 10 age-matched neonates with infantile Krabbe disease are mapped into an atlas for the analysis of major fiber tracts -the genu and splenium of the corpus callosum, the internal capsules tracts and the uncinate fasciculi. The neonate atlas is based on 377 healthy control subjects, generated using an unbiased diffeomorphic atlas building method. To evaluate the performance of one linear and seven nonlinear commonly used registration algorithms for DTI we propose the use of two novel evaluation metrics: a regional matching quality criterion incorporating the local tensor orientation similarity, and a fiber property profile based metric using normative correlation. Our experimental results indicate that the whole tensor based registration method within the DTI-ToolKit (DTI-TK) shows the best performance for our application.
This study aimed to identify a PD-specific MRI pattern using combined diffusion tensor imaging (DTI) and arterial spin labeling (ASL) to discriminate patients with early PD from healthy subjects and evaluate disease status. Twenty-one early and 22 mid-late PD patients, and 22 healthy, age/gender-matched controls underwent 3-T MRI with apparent diffusion coefficient (ADC), fractional anisotropy (FA), fiber number (FN) and cerebral blood flow (CBF) measurements. We found that compared with healthy subjects, there was a profound reduction in FN passing through the SN in PD. FA in the SN and CBF in the caudate nucleus were inversely correlated with motor dysfunction. A negative correlation was observed between FA in the hippocampus (Hip) and the NMSS-Mood score, whereas CBF in the Hip and the prefrontal cortex(PFC) correlated with declined cognition. Stratified five-fold cross-validation identified FA in the SN(FA-SNAv), CBF in the PFC(CBF-PFCAv) and FA in the parietal white matter(FA-PWMAv), and the combination of these measurements offered relatively high accuracy (AUC 0.975, 90% sensitivity and 100% specificity) in distinguishing those with early PD from healthy subjects. We demonstrate that the decreased FNs through SN in combination with changes in FA-SNAv, CBF-PFCAv and FA-PWMAv values might serve as potential markers of early-stage PD.
Diffusion tensor imaging (DTI) provides important information on the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. This paper presents a functional regression framework, called FRATS, for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite dimensional space and their association with a set of covariates of interest, such as age, diagnostic status and gender, in real applications. The functional regression framework consists of four integrated components: the local polynomial kernel method for smoothing multiple diffusion properties along individual fiber bundles, a functional linear model for characterizing the association between fiber bundle diffusion properties and a set of covariates, a global test statistic for testing hypotheses of interest, and a resampling method for approximating the p-value of the global test statistic. The proposed methodology is applied to characterizing the development of five diffusion properties including fractional anisotropy, mean diffusivity, and the three eigenvalues of diffusion tensor along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. Significant age and gestational age effects on the five diffusion properties were found in both tracts. The resulting analysis pipeline can be used for understanding normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.