Diffusion Tensor Imaging (DTI) has become an important MRI procedure to investigate the integrity of white matter in brain in vivo. DTI is estimated from a series of acquired Diffusion Weighted Imaging (DWI) volumes. DWI data suffers from inherent low SNR, overall long scanning time of multiple directional encoding with correspondingly large risk to encounter several kinds of artifacts. These artifacts can be too severe for a correct and stable estimation of the diffusion tensor. Thus, a quality control (QC) procedure is absolutely necessary for DTI studies. Currently, routine DTI QC procedures are conducted manually by visually checking the DWI data set in a gradient by gradient and slice by slice way. The results often suffer from low consistence across different data sets, lack of agreement of different experts, and difficulty to judge motion artifacts by qualitative inspection. Additionally considerable manpower is needed for this step due to the large number of images to QC, which is common for group comparison and longitudinal studies, especially with increasing number of diffusion gradient directions. We present a framework for automatic DWI QC. We developed a tool called DTIPrep which pipelines the QC steps with a detailed protocoling and reporting facility. And it is fully open source. This framework/tool has been successfully applied to several DTI studies with several hundred DWIs in our lab as well as collaborating labs in Utah and Iowa. In our studies, the tool provides a crucial piece for robust DTI analysis in brain white matter study.
SO2 emissions, the largest source of anthropogenic aerosols, can respond rapidly to economic and policy driven changes. However, bottom‐up SO2 inventories have inherent limitations owing to 24–48 months latency and lack of month‐to‐month variation in emissions (especially in developing countries). This study develops a new approach that integrates Ozone Monitoring Instrument (OMI) SO2 satellite measurements and GEOS‐Chem adjoint model simulations to constrain monthly anthropogenic SO2 emissions. The approach's effectiveness is demonstrated for 14 months in East Asia; resultant posterior emissions not only capture a 20% SO2 emission reduction in Beijing during the 2008 Olympic Games but also improve agreement between modeled and in situ surface measurements. Further analysis reveals that posterior emissions estimates, compared to the prior, lead to significant improvements in forecasting monthly surface and columnar SO2. With the pending availability of geostationary measurements of tropospheric composition, we show that it may soon be possible to rapidly constrain SO2 emissions and associated air quality predictions at fine spatiotemporal scales.
We present a new approach to retrieve Aerosol Optical Depth (AOD) using the Moderate Resolution Imaging Spectroradiometer (MODIS) over the turbid coastal water. This approach supplements the operational Dark Target (DT) aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters). Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 µm to be negligible regardless of water turbidity, and therefore the 2.1 µm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of aerosol particles on coastal air quality and climate.
We introduce a new image segmentation task, termed Entity Segmentation (ES) with the aim to segment all visual entities in an image without considering semantic category labels. It has many practical applications in image manipulation/editing where the segmentation mask quality is typically crucial but category labels are less important. In this setting, all semantically-meaningful segments are equally treated as categoryless entities and there is no thing-stuff distinction. Based on our unified entity representation, we propose a center-based entity segmentation framework with two novel modules to improve mask quality. Experimentally, both our new task and framework demonstrate superior advantages as against existing work. In particular, ES enables the following: (1) merging multiple datasets to form a large training set without the need to resolve label conflicts; (2) any model trained on one dataset can generalize exceptionally well to other datasets with unseen domains. Our code is made publicly available at https://github.com/dvlab-research/Entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.