Wang, Jun; Xu, Xiaoguang; Spurr, R.; Wang, Yuxuang; and Drury, Easan, "Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China" (2010 A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a "dynamic lower envelope" approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 μm)/near infrared (NIR, 2.1 μm) reflectance ratio. Joint retrievals of AOT at 0.65 μm and surface reflectance at 2.1 μm are then performed, based on the time, location, and spectraldependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 μm channel, without which the bias is − 0.05. The surface PM 10 (particulate matter with diameter less than 10 μm) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOSChem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring.
Abstract. NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, scheduled for launch in the timeframe of 2023, will carry a hyperspectral scanning radiometer named the Ocean Color Instrument (OCI) and two multi-angle polarimeters (MAPs): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and the SRON Spectro-Polarimeter for Planetary EXploration one (SPEXone). The MAP measurements contain rich information on the microphysical properties of aerosols and hydrosols and therefore can be used to retrieve accurate aerosol properties for complex atmosphere and ocean systems. Most polarimetric aerosol retrieval algorithms utilize vector radiative transfer models iteratively in an optimization approach, which leads to high computational costs that limit their usage in the operational processing of large data volumes acquired by the MAP imagers. In this work, we propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems for applications to the HARP2 instrument and its predecessors. Through the evaluation of synthetic datasets for AirHARP (airborne version of HARP2), the NN model achieves a numerical accuracy smaller than the instrument uncertainties, with a running time of 0.01 s in a single CPU core or 1 ms in a GPU. Using the NN as a forward model, we built an efficient joint aerosol and ocean color retrieval algorithm called FastMAPOL, evolved from the well-validated Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm. Retrievals of aerosol properties and water-leaving signals were conducted on both the synthetic data and the AirHARP field measurements from the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign in 2017. From the validation with the synthetic data and the collocated High Spectral Resolution Lidar (HSRL) aerosol products, we demonstrated that the aerosol microphysical properties and water-leaving signals can be retrieved efficiently and within acceptable error. Comparing to the retrieval speed using a conventional radiative transfer forward model, the computational acceleration is 103 times faster with CPU or 104 times with GPU processors. The FastMAPOL algorithm can be used to operationally process the large volume of polarimetric data acquired by PACE and other future Earth-observing satellite missions with similar capabilities.
Remote sensing measurements from multi-angle polarimeters (MAPs) contain rich aerosol microphysical property information, and these sensors have been used to perform retrievals in optically complex atmosphere and ocean systems. Previous studies have concluded that, generally, five moderately separated viewing angles in each spectral band provide sufficient accuracy for aerosol property retrievals, with performance gradually saturating as angles are added above that threshold. The Hyper-Angular Rainbow Polarimeter (HARP) instruments provide high angular sampling with a total of 90–120 unique angles across four bands, a capability developed mainly for liquid cloud retrievals. In practice, not all view angles are optimal for aerosol retrievals due to impacts of clouds, sunglint, and other impediments. The many viewing angles of HARP can provide resilience to these effects, if the impacted views are screened from the dataset, as the remaining views may be sufficient for successful analysis. In this study, we discuss how the number of available viewing angles impacts aerosol and ocean color retrieval uncertainties, as applied to two versions of the HARP instrument. AirHARP is an airborne prototype that was deployed in the ACEPOL field campaign, while HARP2 is an instrument in development for the upcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission. Based on synthetic data, we find that a total of 20–30 angles across all bands (i.e., five to eight viewing angles per band) are sufficient to achieve good retrieval performance. Following from this result, we develop an adaptive multi-angle polarimetric data screening (MAPDS) approach to evaluate data quality by comparing measurements with their best-fitted forward model. The FastMAPOL retrieval algorithm is used to retrieve scene geophysical values, by matching an efficient, deep learning-based, radiative transfer emulator to observations. The data screening method effectively identifies and removes viewing angles affected by thin cirrus clouds and other anomalies, improving retrieval performance. This was tested with AirHARP data, and we found agreement with the High Spectral Resolution Lidar-2 (HSRL-2) aerosol data. The data screening approach can be applied to modern satellite remote sensing missions, such as PACE, where a large amount of multi-angle, hyperspectral, polarimetric measurements will be collected.
SO2 emissions, the largest source of anthropogenic aerosols, can respond rapidly to economic and policy driven changes. However, bottom‐up SO2 inventories have inherent limitations owing to 24–48 months latency and lack of month‐to‐month variation in emissions (especially in developing countries). This study develops a new approach that integrates Ozone Monitoring Instrument (OMI) SO2 satellite measurements and GEOS‐Chem adjoint model simulations to constrain monthly anthropogenic SO2 emissions. The approach's effectiveness is demonstrated for 14 months in East Asia; resultant posterior emissions not only capture a 20% SO2 emission reduction in Beijing during the 2008 Olympic Games but also improve agreement between modeled and in situ surface measurements. Further analysis reveals that posterior emissions estimates, compared to the prior, lead to significant improvements in forecasting monthly surface and columnar SO2. With the pending availability of geostationary measurements of tropospheric composition, we show that it may soon be possible to rapidly constrain SO2 emissions and associated air quality predictions at fine spatiotemporal scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.