Solar-driven water splitting is an efficient process for converting solar energy into chemical energy. In this process, semiconductor materials are excited by solar energy to generate free electrons to participate in the water-splitting reaction. Among these semiconductor materials, inorganic perovskite oxides have a spatial structure that is easy to control and thereby lead to different energy band structures and photocatalytic properties. More importantly, perovskite oxides can be compounded with other organic/inorganic materials to promote charge separation and improve apparent quantum yield. However, the low solar-to-hydrogen conversion efficiency has not yet reached the requirements of practical applications. In this review, the fundamental principles of solar-driven water splitting based on perovskite materials are introduced according to the most recently published results. In addition, the innovative modification techniques for water splitting based on perovskite oxides have been summarized, focusing on the following methods: element doping, homo/heterojunction formation, Z-scheme, plasmon effect, dye sensitization, carbon enhancement, and surface modifications. Note that the applications in the visible light wavelength range have been described, with emphasis among all these modification materials. Furthermore, the recent water-splitting reaction systems for practical applications are briefly discussed. As a summary, we outline the challenges and potential utilization associated with visible light–driven water splitting based on perovskite oxides for future commercial applications. This review describes various modification methods to improve photochemical performance of perovskite oxides as well as illustrates the potential to employ perovskite oxides as a key material for the practical application of water splitting.
The feedforward model proposed by Hubel and Wiesel partially explained orientation selectivity in simple cells. This classical hypothesis attributed orientation preference to idealized alignment of geniculate cell receptive fields. Many scholars have been either revising this model or putting forward new theories to account for more related phenomenon such as contrast invariant tuning. None of the previous neural models is complete in implementation details or involves strict computational strategies. This paper mathematically studied a detailed but vital question which has long been neglected: the possibility of massive variable-sized, unaligned geniculate cell receptive fields producing the orientation selectivity of a simple cell. The response curve of each afferent neuron is fully utilized to obtain a local constraint and a group-decision making approach is then applied to solve the constraint satisfaction problem. Our new model does not achieve just consistent experimental results with physiological data, but consistent interpretations of several illusions with observers' perceptions. The current work, which supplemented the previous models with necessary computational details, is based on ensemble coding in essence. This underlying mechanism helps to understand how visual information is processed in from the retina to the cortex.
Bridges in a marine environment have been suffering from the chloride attack for a long period of time. Due to the fact that different sections of piers may be exposed to different conditionals, the chloride-induced corrosion not only affects the scale of the deterioration process but also significantly modifies over time the damage propagation mechanisms and the seismic damage distribution. In order to investigate the seismic damage of existing RC bridges subject to spatial chloride-induced corrosion in a marine environment, Duracrete model is applied to determine the corrosion initiation time of reinforcing steels under different exposure conditionals and the degradation models of reinforcing steels, confined concrete, and unconfined concrete are obtained based on the previous investigation. According to the seismic fragility assessment method, the damage assessment approach for the existing RC bridges subject to spatial chloride-induced corrosion in a marine environment is present. Moreover, a case study of a bridge under two kinds of water regions investigated the influence of spatial chloride-induced corrosion on the seismic damage of piers and other components. The results show that the spatial chloride-induced corrosion may result in the section at the low water level becoming more vulnerable than the adjacent sections and the alteration of seismic damage distribution of piers. The corrosion of pier will increase the seismic damage probability of itself, whereas it will result in a reduction of seismic damage probability of other components. Moreover, the alteration of seismic damage distribution of piers will amplify the effect. Due to the fact that the spatial chloride-induced corrosion of piers may alter the yield sequence of cross section, it then affects the seismic performance assessment of piers. A method to determine the evolution probability of yield sequence of corroded piers is proposed at last. From the result, the evolution probability of yield sequence of piers in longitudinal direction depends on the relationship between the height of piers and submerged zone. Moreover, the height of piers, submerged zone, and tidal zone have a common influence on the evolution of yield sequence of piers in transversal direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.