The thermostability of MAN-P is higher than other known fungal mannanases and the expression and thermophilic properties make MAN-P useful for industrial applications.
BackgroundL-ornithine (L-Orn), is an intermediate metabolite in the urea cycle that plays a significant role in humans. L-Orn can be obtained from the catalysis of L-arginine (L-Arg) by arginase. The Pichia pastoris expression system offers the possibility of generating a large amount of recombinant protein. The immobilized enzyme technology can overcome the difficulties in recovery, recycling and long-term stability that result from the use of free enzyme.MethodsThe recombinant human arginase I (ARG I) was obtained using an optimized method with the Pichia pastoris GS115 as the host strain. Chitosan paticles were cross-linked with glutaraldehyde and rinsed exhaustively. Then the expressed ARG I was immobilized on the crosslinked chitosan particles, and the enzymatic properties of both the free and immobilized enzymes were evaluated. At last, the immobilized ARG I was employed to catalyze L-Arg to L-Orn.ResultsThe results indicated that these two states both exhibited optimal activity under the same condition of pH10 at 40 °C. However, the immobilized ARG I exhibited the remarkable thermal and long-term stability as well as broad adaptability to pH, suggesting its potential for wide application in future industry. After a careful analysis of its catalytic conditions, immobilized ARG I was employed to catalyze the conversion of L-Arg to L-Orn under optimal condition of 1 % glutaraldehyde, 1 mM Mn2+, 40 °C, pH10 and an L-arginine (L-Arg) concentration of 200 g/L, achieving a highly converted content of 149.g/L L-Orn.ConclusionsIn this work, ARG Ι was abundantly expressed, and an efficient, facile and repeatable method was developed to synthesize high-quality L-Orn. This method not only solved the problem of obtaining a large amount of arginase, but also provided a promising alternative for the future industrial production of L-Orn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.