Footshock stress can reinstate cocaine-seeking behavior through a central action of the stress-associated neurohormone corticotropinreleasing factor (CRF). Here we report (1) that footshock stress releases CRF in the ventral tegmental area (VTA) of the rat brain, (2) that, in cocaine-experienced but not in cocaine-naive rats, this CRF acquires control over local glutamate release, (3) that CRF-induced glutamate release activates the mesocorticolimbic dopamine system, and (4) that, through this circuitry, footshock stress triggers relapse to drug seeking in cocaine-experienced animals. Thus, a long-lasting cocaine-induced neuroadaptation, presumably at the level of glutamate terminals in the VTA, appears to play an important role in stress-induced relapse to drug use. Similar neuroadaptations may be important for the comorbidity between addiction and other stress-related psychiatric disorders.
In this manuscript we report that human embryonic stem cells (hESCs) differentiated into dopaminergic neurons when cocultured with PA6 cells. After 3 weeks of differentiation, approximately 87% of hES colonies contained tyrosine hydroxylase (TH)–positive cells, and a high percentage of the cells in most of the colonies expressed TH. Differentiation was inhibited by exposure to BMP4 or serum.
TH‐positive cells derived from hESCs were postmitotic, as determined by bromodeoxyurindine colabeling. Differentiated cells expressed other markers of dopaminergic neurons, including the dopamine transporter, aromatic amino acid decarboxylase, and the transcription factors associated with neuronal and dopaminergic differentiation, Sox1, Nurr1, Ptx3, and Lmx1b. Neurons that had been differentiated on PA6 cells were negative for dopamine‐β‐hydroxylase, a marker of noradrenergic neurons. PA6‐induced neurons were able to release dopamine and 3,4‐dihydroxphe‐hylacetic acid (DOPAC) but not noradrenalin when depolarized by high K+.
When transplanted into 6‐hydroxydopamine–treated animals, hES‐derived dopaminergic cells integrated into the rat striatum. Five weeks after transplantation, surviving TH‐positive cells were present but in very small numbers compared with the high frequency of TH‐positive cells seen in PA6 coculture. Larger numbers of cells positive for smooth muscle actin, but no undifferentiated ES cells, were present after transplantation. Therefore, hESCs can be used to generate human dopaminergic cells that exhibit biochemical and functional properties consistent with the expected properties of mature dopaminergic neurons.
The present studies revealed a role of VTA CRF-BP and suggest an involvement of CRF(2)R in the effectiveness of stress in triggering glutamate and dopamine release and cocaine seeking in drug-experienced animals.
An increase in the extracellular concentration of dopamine in the nucleus accumbens (NAc) is believed to be one of the main mechanisms involved in the rewarding and motor-activating properties of psychostimulants such as amphetamines and cocaine. Using in vivo microdialysis in freely moving rats, we demonstrate that systemic administration of behaviorally relevant doses of caffeine can preferentially increase extracellular levels of dopamine and glutamate in the shell of the NAc. These effects could be reproduced by the administration of a selective adenosine A1 receptor antagonist but not by a selective adenosine A2A receptor antagonist. This suggests that caffeine, because of its ability to block adenosine A1 receptors, shares neurochemical properties with other psychostimulants, which could contribute to the widespread consumption of caffeine-containing beverages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.