kinetics of ORR is around five orders of magnitude slower than that of HOR, thereby requiring a much higher Pt loading in the cathode along with more active and durable ORR electrocatalysts than pure Pt catalysts. [1] This requirement presents challenges for the development of advanced cathode catalysts with lower cost, higher activity and higher durability than Pt. Meanwhile, traditional alkaline fuel cells (AFCs) working on concentrated 30−45% KOH electrolytes gained little attention for decades mainly due to their high sensitivity to atmospheric CO 2 . [2,3] The OH − ions in the electrolyte react with CO 2 and form K 2 CO 3 , which can precipitate out as solid crystals, blocking pores in the electrode and gas diffusion layer. In addition, the consumption of OH − reduces the conductivity of the electrolyte. This issue is addressed by replacing KOH solution with a solid anion exchange membrane (AEM) without mobile cations. An AMFC offers several important advantages over PEMFCs, including: 1) low dissolution rates of catalysts, allowing the use of less expensive Pt-free electrocatalysts; 2) wide selections of materials and components that are stable at high pH; and 3) inexpensive solid electrolytes that do not need fluorinated ionomers. Despite their promise, AMFCs are still in the early development stage and have not been systematically investigated due to the lack of highly conductive and durable AEMs. The recent development of highly conductive The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202006292.
Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.
The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum−iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.4 A/mg Pt , ∼20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)−body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.
With abundant crystal defects, cerium oxide (CeO2), widely used in heterogeneous catalysis, has attracted extensive attention. In recent years, researchers have investigated that the defect chemistry of CeO2 plays a vital role in its catalytic activity and have developed various defect introduction methods to synthesize stable and efficient defective CeO2‐based catalysts. Herein, the understanding, introduction, and applications of defect chemistry in CeO2‐based heterogeneous catalysis are reviewed, and the structure–activity relationship between defect engineering and catalytic performance is recommended with great emphasis. Interests are put into the investigation of how defects influence the activity and stability of defective CeO2 catalysts and effective strategies for fabricating efficient, stable, and defective CeO2 catalysts. Finally, the existing problems and perspectives of CeO2 defect chemistry for heterogeneous catalysis are displayed. This review provides a reference for in‐depth understanding and the design of more efficient CeO2‐based catalysts for heterogeneous catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.