Dipleosporalones A and B (1 and 2), two new [2 + 2] azaphilone dimers, were obtained from a marine-derived Pleosporales sp. fungus. The absolute configurations of 1 and 2 were elucidated by calculations of their ECD spectra. Dipleosporalone A (1) possessed an unprecedented skeleton with an uncommon 6/4/6 ring system. Compounds 1 and 2 showed cytotoxicity about 30−90-fold more potent than that of their monomer pinophilin B.
Investigation of the marine-derived fungus Pleosporales sp. CF09-1 cultured in modified PDB medium led to the isolation of six new azaphilone derivatives, pleosporalones B and C (1 and 2) and pleosporalones E−H (4−7), and one known analogue (3). The absolute configurations of C-2′ and C-3′ in 3 were assigned by a vibrational circular dichroism method. The C-11 relative configurations for the pair of C-11 epimers (4 and 5) were established by comparing the magnitude of the computed 13 C NMR chemical shifts (Δδ calcd ) with the experimental 13 C NMR values (Δδ exp ) for the epimers. Antiphytopathogenic and anti-Vibrio activities were evaluated for 1−7. Pleosporalone B (1) exhibited potent antifungal activities against the fungi Alternaria brassicicola and Fusarium oxysporum with the same MIC value of 1.6 μg/mL, which were stronger than the positive control ketoconazole among these compounds. Additionally, pleosporalone C (2) displayed significant activity against the fungus Botryosphaeria dothidea (MIC, 3.1 μg/mL). Compounds 6 and 7 displayed moderate anti-Vibrio activities against Vibrio anguillarum and Vibrio parahemolyticus, with MIC values of 13 and 6.3 μg/mL for 6 and 6.3 and 25 μg/mL for 7, respectively.
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.