Superparamagnetic polymer nanofibers intended for drug delivery and therapy are considered here. Magnetite (Fe3O4) nanoparticles in the diameter range of 5-10 nm were synthesized in aqueous solution. Polymer nanofibers containing magnetite nanoparticles were prepared from commercially available poly(hydroxyethyl methacrylate), PHEMA, and poly-L-lactide (PLLA) by the electrospinning technique. Nanofibers with diameters ranging from 50 to 300 nm were obtained. Nanofibers containing up to 35 wt % magnetite nanoparticles displayed superparamagnetism at room temperature. The blocking temperature was about 50 K for an applied field of 500 Oe, and the saturation magnetization was 3.5 emu g(-1) and 1.1 emu g(-1) for Fe3O4/PHEMA and Fe3O4/PLLA nanofibers, respectively, and depended on the amount of Fe3O4 nanoparticles in the nanocomposites. To test such magnetic nano-objects for applications as drug carriers and drug-release systems we incorporated a fluorescent albumin with dog fluorescein isothiocyanate (ADFI).
High-temperature compression and electron backscatter diffraction (EBSD) techniques were used in a systematic investigation of the dynamic recrystallization (DRX) behavior and texture evolution of the Inconel625 alloy. The true stress–true strain curves and the constitutive equation of Inconel625 were obtained at temperatures ranging from 900 to 1200 °C and strain rates of 10, 1, 0.1, and 0.01 s−1. The adiabatic heating effect was observed during the hot compression process. At a high strain rate, as the temperature increased, the grains initially refined and then grew, and the proportion of high-angle grain boundaries increased. The volume fraction of the dynamic recrystallization increased. Most of the grains were randomly distributed and the proportion of recrystallized texture components first increased and then decreased. Complete dynamic recrystallization occurred at 1100 °C, where the recrystallized volume fraction and the random distribution ratios of grains reached a maximum. This study indicated that the dynamic recrystallization mechanism of the Inconel625 alloy at a high strain rate included continuous dynamic recrystallization with subgrain merging and rotation, and discontinuous dynamic recrystallization with bulging grain boundary induced by twinning. The latter mechanism was less dominant.
Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.