Cancer stem-like cell (CS-like cell) is considered to be responsible for recurrence and drug resistance events in breast cancer, which makes it a potential target for novel cancer therapeutic strategy. The FDA approved flubendazole, has been widely used in the treatment of intestinal parasites. Here, we demonstrated a novel effect of flubendazole on breast CS-like cells. Flubendazole inhibited breast cancer cells proliferation in dose- and time-dependent manner and delayed tumor growth in xenograft models by intraperitoneal injection. Importantly, flubendazole reduced CD44high/CD24low subpopulation and suppressed the formation of mammosphere and the expression of self-renewal related genes including c-myc, oct4, sox2, nanog and cyclinD1. Moreover, we found that flubendazole induced cell differentiation and inhibited cell migration. Consistently, flubendazole reduced mesenchymal markers (β-catenin, N-cadherin and Vimentin) expression and induced epithelial and differentiation marker (Keratin 18) expression in breast cancer cells. Mechanism study revealed that flubendazole arrested cell cycle at G2/M phase and induced monopolar spindle formation through inhibiting tubulin polymerization. Furthermore, flubendazole enhanced cytotoxic activity of conventional therapeutic drugs fluorouracil and doxorubicin against breast cancer cells. In conclusion, our findings uncovered a remarkable effect of flubendazole on suppressing breast CS-like cells, indicating a novel utilization of flubendazole in breast cancer therapy.
Chemoresistance is a major cause of cancer treatment failure. Tumor-initiating cells (TIC) have attracted a considerable amount of attention due to their role in chemoresistance and tumor recurrence. Here, we evaluated the small molecule Aurora kinase inhibitor AKI603 as a novel agent against TICs in breast cancer. AKI603 significantly inhibited Aurora-A (AurA) kinase and induced cell-cycle arrest. In addition, the intragastric administration of AKI603 reduced xenograft tumor growth. Interestingly, we found that breast cancer cells that were resistant to epirubicin expressed a high level of activated AurA and also have a high CD24 Low /CD44 High TIC population. The inhibition of AurA kinase by AKI603 abolished the epirubicininduced enrichment of TICs. Moreover, AKI603 suppressed the capacity of cells to form mammosphere and also suppressed the expression of self-renewal genes (b-catenin, c-Myc, Sox2, and Oct4). Thus, our work suggests the potential clinical use of the small molecule Aurora kinase inhibitor AKI603 to overcome drug resistance induced by conventional chemotherapeutics in breast cancer.
Estrogen receptor β (ERβ) plays critical roles in thyroid cancer progression. However, its role in thyroid cancer stem cell maintenance remains elusive. Here, we report that ERβ is overexpressed in papillary thyroid cancer stem cells (PTCSCs), whereas ablation of ERβ decreases stemness-related factors expression, diminishes ALDH+ cell populations, and suppresses sphere formation ability and tumor growth. Screening estrogen-responsive lncRNAs in PTC spheroid cells, we find that lncRNA-H19 is highly expressed in PTCSCs and PTC tissue specimens, which is correlated with poor overall survival. Mechanistically, estradiol (E2) significantly promotes H19 transcription via ERβ and elevates H19 expression. Silencing of H19 inhibits E2-induced sphere formation ability. Furthermore, H19 acting as a competitive endogenous RNA sequesters miRNA-3126-5p to reciprocally release ERβ expression. ERβ depletion reverses H19-induced stem-like properties upon E2 treatment. Appropriately, ERβ is upregulated in PTC tissue specimens. Notably, aspirin attenuates E2-induced cancer stem-like traits through decreasing both H19 and ERβ expression. Collectively, our findings reveal that ERβ-H19 positive feedback loop has a compelling role in PTCSC maintenance under E2 treatment and provides a potential therapeutic targeting strategy for PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.