Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.
We identified a novel CTX-M chimera, CTX-M-137, with a CTX-M-14-like N-terminus and a CTX-M-15-like C-terminus. Our findings suggest an ongoing diversification of CTX-M-type ESBLs through recombination events.
A growing number of b-lactamases have been reported in Pseudomonas aeruginosa clinical isolates. The aim of this study was to investigate the diversity of b-lactamases in the collection of 51 ceftazidime-resistant P. aeruginosa clinical isolates in four hospitals of southern China. Among these isolates, variable degrees of resistance to other b-lactam and non-b-lactam agents were observed. Pulsed-field gel electrophoresis (PFGE) revealed a high degree of clonality with five main genotypes. Of the 51 isolates tested, 35 (68.6 %) were identified as extended-spectrum b-lactamase (ESBL) producers, with 35 producing PER-1, 1 CTX-M-3, 7 CTX-M-15 and 1 CTX-M-14. Most (82.9 %, 29/35) PER-1-producing isolates were collected from two hospitals between January and April in 2008 and belonged to the same PFGE pattern (pattern B) with similar antibiogram and b-lactamase profiles, which suggested an outbreak of this clone at the time. The prevalence of CTX-M-type ESBL (17.6 %, 9/51) was unexpectedly high. One isolate was identified as producing VIM-2. Furthermore, we also reported an occurrence of a novel OXA-10 variant, OXA-246, in 14 P. aeruginosa isolates. In addition, AmpC overproduction was found to be the b-lactamase-mediated mechanism responsible for ceftazidime resistance in 6 isolates (11.8 %). Our results revealed an overall diversity of b-lactamases and outbreak of a PER-1-producing clone among ceftazidime-resistant P. aeruginosa in southern China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.