Intelligent radios collect information by sensing signals within the radio spectrum, and the automatic modulation recognition (AMR) of signals is one of their most challenging tasks. Although the result of a modulation classification based on a deep neural network is better, the training of the neural network requires complicated calculations and expensive hardware. Therefore, in this paper, we propose a master-slave AMR architecture using the reconfigurability of field-programmable gate arrays (FPGAs). First, we discuss the method of building AMR, by using a stack convolution autoencoder (CAE), and analyze the principles of training and classification. Then, on the basis of the radiofrequency network-on-chip architecture, the constraint conditions of AMR in FPGA are proposed from the aspects of computing optimization and memory access optimization. The experimental results not only demonstrated that AMR-based CAEs worked correctly, but also showed that AMR based on neural networks could be implemented on FPGAs, with the potential for dynamic spectrum allocation and cognitive radio systems.
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.