Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom in addition to charge and spin, which has revived the field of valleytronics. In this work we investigate the valley-resolved thermoelectric transport through a magnetic silicene superlattice. Since spin is coupled to the valley, this device allows a coexistence of the insulating transmission gap of one valley and the metallic resonant band of the other, resulting in a strong valley polarization P v . P v oscillates with the barrier strength V with its magnitude greatly enhanced by the superlattice structure. In addition, a controllable fully valley polarized transport and an on/off switching effect in the conductance spectra are obtained. Furthermore, the spin-and valley-dependent thermopowers can be controlled by V, the on-site potential difference between A and B sublattices and Fermi energy, and enhanced by the superlattice structure. Enhanced valley-resolved thermoelectric transport and its control by means of gate voltages make the magnetic silicene superlattice attractive in valleytronics applications.
We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene.
Tunneling conductance in clean ferromagnet/ ferromagnet/d-wave superconductor (F/F/d-wave S) double tunnel junctions is studied by use of four-component Bogoliubov-de Gennes equations. The novel Andreev reflection appears due to noncollinear magnetizations, in which the incident electron and the Andreev-reflected hole come from the same spin subband, resulting in spin-triplet pairing states near the F/S interface. In the highly polarized Fs case, the conductance within the energy gap exhibits a conversion from a zero-bias dip in the parallel magnetizations to a spilt zero-bias peak in the perpendicular magnetizations.
Conductance properties of topological insulator based ferromagnetic insulator/d-wave superconductor and normal metal/ferromagnetic insulator/d-wave superconductor junctions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.