Background
Factors limiting the efficacy of conventional antiretroviral therapy for HIV-1 infection include treatment adherence, pharmacokinetics and penetration into viral sanctuaries. These affect the rate of viral mutation and drug resistance. In attempts to bypass such limitations, nanoparticles containing ritonavir, indinavir and efavirenz (described as nanoART) were manufactured to assess macrophage-based drug delivery.
Methods
NanoART were made by high-pressure homogenization of crystalline drug with various surfactants. Size, charge and shape of the nanoparticles were assessed. Monocyte-derived macrophage nanoART uptake, drug release, migration and cytotoxicity were determined. Drug levels were measured by reverse-phase high-performance liquid chromatography.
Results
Efficient monocyte-derived macrophage cytoplasmic vesicle uptake in less than 30 min based on size, charge and coating was observed. Antiretroviral drugs were released over 14 days and showed dose-dependent reduction in progeny virion production and HIV-1 p24 antigen. Cytotoxicities resulting from nanoART carriage were limited.
Conclusion
These results support the continued development of macrophage-mediated nanoART carriage for HIV-1 disease.
A novel and effective protocol for the surface modification and quantitative characterization of magnetic polymeric nanospheres prepared by miniemulsion polymerization is reported. Composite nanospheres consisting of polymer-coated iron oxide nanoparticles were prepared by the miniemulsion polymerization of methyl methacrylate and divinylbenzene in the presence of magnetic fluid. Surface modification reaction of the magnetic polymer with poly(ethylene glycol) (PEG) was employed to obtain a hydrophilic hydroxyl-group-functionalized magnetic nanospheres. An affinity dye, Cibacron blue F3G-A (CB), was then coupled covalently to prepare a magnetic nonporous affinity adsorbent. The morphology and magnetic property of the polymer nanospheres obtained were examined by transmission electron microscopy and a vibrating sample magnetometer. The contents of surface groups modified were quantitatively measured by using diffusive reflectance Fourier transform infrared spectroscopy on the basis of a linear relationship between the intensity ratio of IC-O-C/IC=O and the content of PEG. X-ray photoelectron spectroscopy (XPS) was used to examine the surface of magnetic nanospheres. It was confirmed by the comparison of XPS spectra of both dye-coated and uncoated magnetic nanospheres to which the CB ligand was coupled, and the surface of the PEG-modified nanospheres had an exact 3:7 atomic ratio of sulfur to nitrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.