As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults.
It is well known that no criterion about seismic design for risers is available, and relevant research has not been reported. A comprehensive study of riser dynamics during earthquakes is performed in this paper. A dynamic model for seismic analysis of risers is developed in accordance with the working environment of the risers and the infl uence of inertia force of the pipelines. The dynamic equations for the developed model are derived and resolved on the basis of the energy theory of beams. Numerical simulation for an engineering project in the Bohai Oil Field, China shows that the fundamental frequency of the riser plays the major role in the seismic responses, and for platforms in shallow water in Bohai Bay, the risers demonstrate a much lower stress response due to prominent differences between the riser frequency and the earthquake wave frequency. The presented model and its corresponding method for seismic analysis are practical and important for riser design resistant to earthquake waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.