The intelligent dispatch and control of future smart grid demands grasping of any nodal load pattern in the general great grid, therefore to realize the load forecasting of any nodal load is quite important. To solve this problem, focusing on overcoming the weakness of isolated nodal load forecasting and based on the correlation analysis, this paper proposes a multi-dimensional nodal load forecast system and corresponding method for effective prediction of any nodal load of the grid. This system includes topology partitioning of the grid energy flow according to layers and regions, basic forecasting unit composed of each layer’s total amount of load and its nodal loads, and combination forecasting for any node. The forecasting method is based on techniques including the multi-output least square support vector machine, Kalman filtering and the approximate optimal prediction. A case study shows that the multi-dimensional nodal load forecasting model helps to improve the forecasting accuracy, and has practical prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.