Virtual testability demonstration test brings new requirements to the fault sample generation. First, fault occurrence process is described by stochastic process theory. It is discussed that fault occurrence process subject to minimal repair is nonhomogeneous Poisson process (NHPP). Second, the interarrival time distribution function of the next fault event is proposed and three typical kinds of parameterized NHPP are discussed. Third, the procedure of fault sample generation is put forward with the assumptions of minimal maintenance and scheduled replacement. The fault modes and their occurrence time subject to specified conditions and time period can be obtained. Finally, an antenna driving subsystem in automatic pointing and tracking platform is taken as a case to illustrate the proposed method. Results indicate that both the size and structure of the fault samples generated by the proposed method are reasonable and effective. The proposed method can be applied to virtual testability demonstration test well.
Sample allocation and selection technology is of great significance in the test plan design of prognostics validation. Considering the existing researches, the importance of prognostics samples of different moments is not considered in the degradation process of a single failure. Normally, prognostics samples are generated under the same time interval mechanism. However, a prognostics system may have low prognostics accuracy because of the small quantity of failure degradation and measurement randomness in the early stage of a failure degradation process. Historical degradation data onto equipment failure modes are collected, and the degradation process model based on the multi-stage Wiener process is established. Based on the multi-stage Wiener process model, we choose four parameters to describe different degradation stages in a degradation process. According to four parameters, the sample selection weight of each degradation stage is calculated and the weight of each degradation stage is used to select prognostics samples. Taking a bearing wear fault of a helicopter transmission device as an example, its degradation process is established and sample selection weights are calculated. According to the sample selection weight of each degradation process, we accomplish the prognostics sample selection of the bearing wear fault. The results show that the prognostics sample selection method proposed in this article has good applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.