Introduction LncRNA SLC16A1-AS1 has been characterized as a critical player in lung cancer, while its role in glioblastoma (GBM) is unknown. By analyzing the TCGA dataset, we observed the upregulation of SLC16A1-AS1 expression in GBM. Therefore, we aimed to investigate the role of SLC16A1-AS1 in this cancer. Methods GBM tissues and paired non-tumor tissues were collected from 62 GBM patients through biopsy. RT-qPCR was performed to determine the expression of SLC16A1-AS1 and miR-149. Linear regression was used to analyze their correlations. The relationship between SLC16A1-AS1 and miR-149 was assessed by gain and loss of function experiments. Methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) were performed to analyze the methylation status of miR-149. Cell proliferation was evaluated by CCK-8 assay and colony formation experiments in GBM cells. Results We found that SLC16A1-AS1 expression was upregulated in GBM tissues, and the upregulated expression of SLC16A1-AS1 predicted poor survival of GBM patients. MiR-149 was downregulated in GBM tissues and inversely correlated with the expression of SLC16A1-AS1. In GBM cells, overexpression of SLC16A1-AS1 downregulated the expression of miR-149 and increased the methylation of miR-149 gene. In cell proliferation and colony formation assay, overexpression of SLC16A1-AS1 reduced the inhibitory effects of miR-149 on GBM cell proliferation. Conclusion SLC16A1-AS1 may promote GBM cell proliferation by regulating miR-149 methylation. SLC16A1-AS1 can be considered as a potential diagnostic marker in GBM.
Managing low-grade gliomas (LGG) remains a major medical challenge due to the infiltrating nature of the tumor and failure of surgical resection to eliminate the disease. EMILIN/Multimerins contain the gC1q signature, which is involved in many tumor processes. However, the expression and prognostic value of EMILIN/Multimerins in LGG remains unclear. This study used integrated bioinformatics analysis to investigate the expression pattern, prognostic value and function of EMILIN/Multimerins in patients with LGG. We analyzed the transcription levels and prognostic value EMILIN/Multimerins in LGG using the ONCOMINE, Gene Expression Profiling Interactive Analysis (GEPIA) and UALCAN databases. The mutation and co-expression rates of neighboring genes in EMILIN/Multimerins were studied using cBioPortal. TIMER and Metascape were used to reveal the potential function of EMILIN/Multimerins in LGG. According to our analysis, most EMILIN/Multimerins were overexpressed in LGG and shared a clear association with immune cells. GEPIA analysis confirmed that high levels of EMILIN/Multimerins, not including MMRN2, were associated with a poor prognosis in disease-free survival of patients with LGG. Additionally, we discovered that EMILIN/Multimerins may regulate LGG and we found a correlation between their expression patterns and distinct pathological grades. We found that EMILIN/Multimerins serve as possible prognostic biomarkers and high-priority therapeutic targets patients with LGG.
m6A modification is one of the most important post-transcriptional modifications in RNA and plays an important role in promoting translation or decay of RNAs. The role of m6A modifications has been highlighted by increasing evidence in various cancers, which, however, is rarely explored in acral melanoma. Here, we demonstrated that m6A level was highly elevated in acral melanoma tissues, along with the expression of METTL3, one of the most important m6A methyltransferase. Besides, higher expression of METTL3 messenger RNA (mRNA) correlated with a higher stage in primary acral melanoma patients. Knockdown of METTL3 decreased global m6A level in melanoma cells. Furthermore, METTL3 knockdown suppressed the proliferation, migration, and invasion of melanoma cells. In METTL3 knockdown xenograft mouse models, we observed decreased volumes and weights of melanoma tissues. Mechanistically, we found that METTL3 regulates certain m6A-methylated transcripts, thioredoxin domain containing protein 5 (TXNDC5), with the confirmation of RNA-seq, MeRIP-seq, and Western blot. These data suggest that METTL3 may play a key role in the progression of acral melanoma, and targeting the m6A dependent-METTL3 signaling pathway may serve as a promising therapeutic strategy for management of patients of acral melanomas.
MicroRNA-1269 (miR-1296) promotes esophageal cancer. However, its role in other cancers, such as glioblastoma (GBM) is unclear. We predicted that miR-1269 might interact with long non-coding RNA (lncRNA) SLC16A1 Antisense RNA 1 (SLC16A1-AS1), a critical player in GBM. We then studied the interaction between SLC16A1-AS1 and miR-1269 in GBM. In this study, paired GBM and non-tumor tissues were used to analyze the expression of SLC16A1-AS1 and premature and mature miR-1269. The interaction of SLC16A1-AS1 with premature miR-1269 was analyzed with RNA pull-down assay and dual-luciferase reporter assay. Cellular fractionation assay was applied to determine the subcellular location of SLC16A1-AS1. Overexpression assays were applied to determine the role of SLC16A1-AS1 in miR-1269 maturation. BrdU, Transwell and cell apoptosis assays were performed to analyze the role of SLC16A1-AS1 and miR-1269 in GBM cell proliferation, migration, and invasion. Interestingly, we observed the upregulation of premature miR-1269 and downregulation of mature miR-1269 in GBM. SLC16A1-AS1 was also overexpressed in GBM. The direct interaction of SLC16A1-AS1 with premature miR-1269 was observed. SLC16A1-AS1 suppressed miR-1269 maturation and promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while miR-1269 displayed the opposite trend. SLC16A1-AS1 partly reversed the effects of miR-1269 on GBM cell proliferation, movement and apoptosis. Moreover, SLC16A1-AS1 overexpression increased the level of ki-67, CDK4 and Bcl-2 in LN-229 and LN-18 cells. However, miR-1269 could partly reverse the effect of SLC16A-AS1 on protein levels. Overall, miR-1269 is downregulated in GBM and its maturation is regulated by SLC16A1-AS1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.