We investigated the stability of reduced graphene oxide for oxygen density ranging from 6.25% to 50% with the density functional theory and found the most, the second most, and the third most stable oxygen configurations. The effect of relaxation of lattice on the electronic properties is found to be negligible for low O coverage and crucial for higher O coverage, respectively. The densities of states and the band gaps were calculated. The bandgap is found to be a non-monotonic function of oxygen density, with minima at O/C = 11.1% and 25%.
A quantum-mechanical simulation is carried out to investigate the charge distribution and electrostatic potential along a 1 microm long (5,5) single-walled carbon nanotube under realistic field-emission experimental conditions. A single layer of carbon atoms is found sufficient to shield most of the electric field except at the tip where strong field penetration occurs. The penetration leads to a nonlinear decrease of potential barrier for emission, which is equally responsible for the low threshold voltage besides the well-known geometrical field enhancement factor.
In this work we study the constraints on the dark matter interaction with the standard model particles, from the observations of dark matter relic density, the direct detection experiments of CDMS and XENON, and the indirect detection of thep/p ratio by PAMELA. A model independent way is adopted in the study by constructing the effective interaction operators between dark matter and standard model particles. The most general 4-fermion operators are investigated. We find that the constraints from different observations are complementary with each other. Especially the spin independent scattering gives very strong constraints for corresponding operators. In some cases the indirect detection ofp/p data can actually be more sensitive than the direct detection or relic density for light dark matter ( 70 GeV).PACS numbers: 95.35.+d, 95.30.Cq, 95.85.Ry
We simulate the critical relaxation process of the two-dimensional Ising model with the initial state both completely disordered or completely ordered. Results of a new method to measure both the dynamic and static critical exponents are reported, based on the finite size scaling for the dynamics at the early time. From the time-dependent Binder cumulant, the dynamical exponent z is extracted independently, while the static exponents β/ν and ν are obtained from the time evolution of the magnetization and its higher moments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.