Abstract:In this study, we compare the difference in the impact between open access (OA) and non-open access (non-OA) articles. 1761 Nature Communications articles published from 1 Jan. 2012 to 31 Aug. 2013 are selected as our research objects, including 587 OA articles and 1174 non-OA articles. Citation data and daily updated article-level metrics data are harvested directly from the platform of nature.com. Data is analyzed from the static versus temporal-dynamic perspectives. The OA citation advantage is confirmed, and the OA advantage is also applicable when extending the comparing from citation to article views and social media attention. More important, we find that OA papers not only have the great advantage of total downloads, but also have the feature of keeping sustained and steady downloads for a long time. For article downloads, non-OA papers only have a short period of attention, when the advantage of OA papers exists for a much longer time.
This paper investigates the data accumulation velocity of 12 Altmetric.com data sources. DOI created date recorded by Crossref and altmetric event posted date tracked by Altmetric.com are combined to reflect the altmetric data accumulation patterns over time and to compare the data accumulation velocity of various data sources through three proposed indicators, including Velocity Index, altmetric half-life, and altmetric time delay. Results show that altmetric data sources exhibit different data accumulation velocity. Some altmetric data sources have data accumulated very fast within the first few days after publication, such as Reddit, Twitter, News, Facebook, Google+, and Blogs. On the opposite spectrum, research outputs are at relatively slow pace in accruing data on some data sources, like Policy documents, Peer review, Q&A, Wikipedia, Video, and F1000Prime. Most altmetric data sources' velocity degree also changes by document types, subject fields, and research topics. The type Review is slower in receiving altmetric mentions than Article, while Editorial Material and Letter are typically faster. In general, most altmetric data sources show higher velocity values in the fields of Physical Sciences and Engineering and Life and Earth Sciences. Within each field, there also exist some research topics that attract social attention faster than others.
Sufficient data presence is one of the key preconditions for applying metrics in practice. Based on both Altmetric.com data and Mendeley data collected up to 2019, this paper presents a state-of-the-art analysis of the presence of 12 kinds of altmetric events for nearly 12.3 million Web of Science publications published between 2012 and 2018. Results show that even though an upward trend of data presence can be observed over time, except for Mendeley readers and Twitter mentions, the overall presence of most altmetric data is still low. The majority of altmetric events go to publications in the fields of Biomedical and Health Sciences, Social Sciences and Humanities, and Life and Earth Sciences. As to research topics, the level of attention received by research topics varies across altmetric data, and specific altmetric data show different preferences for research topics, on the basis of which a framework for identifying hot research topics is proposed and applied to detect research topics with higher levels of attention garnered on certain altmetric data source. Twitter mentions and policy document citations were selected as two examples to identify hot research topics of interest of Twitter users and policy-makers, respectively, shedding light on the potential of altmetric data in monitoring research trends of specific social attention.
Scholarly articles are discussed and shared on social media, which generates altmetrics. On the opposite side, what is the impact of social media on the dissemination of scholarly articles and how to measure it? What are the visiting patterns? Investigating these issues, the purpose of this study is to seek a solution to fill the research gap, specifically, to explore the dynamic visiting patterns directed by social media, and examine the effects of social buzz on the article visits. Using the unique real referral data of 110 scholarly articles, which are daily updated in a 90-day period, this paper proposes a novel method to make analysis. We find that visits from social media are fast to accumulate but decay rapidly. Twitter and Facebook are the two most important social referrals that directing people to scholarly articles, the two are about the same and account for over 95% of the total social referral directed visits. There is synchronism between tweets and tweets resulted visits. Social media and open access are playing important roles in disseminating scholarly articles and promoting public understanding science, which are confirmed quantitatively for the first time with real data in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.