Urban-rural development and transformation is profoundly changing the socioeconomic system as well as the natural environment. The study uses the AHP (Analytic Hierarchy Process) method to construct a top-down index of human activity based around five dimensions (population, land, industry, society, and environment) to evaluate the spatial characteristics in the region east of the Hu Huanyong line, China, in 1994 and 2010. Then, we investigate the spatial-temporal pattern using the methods of hotspot analysis, local Moran's I index and Pearson correlation coefficient. The calculation showed that: (1) northeast China was experiencing an economic recession during study period, and the implementation of revitalization plan have not controlled the recession trend yet; (2) Pearson correlation analysis showed that the improvement of population quality promote the development of industry and society systems significantly during study period; and (3) negative correlation between Population Development Index (PDI) change and Population Transformation Index (PTI) change (along with the Society Transformation Index (STI) change and Industry Transformation Index (ITI) change) reflected that east of the Hu Huanyong line, China was in a "demographic dividend" period. Then, with the help of SOFM neural network algorithm, we divided the study area into six types of region, and found that municipalities, provincial capitals, Yangtze River Delta region and cities on the North China Plain owned the greatest development, while cities in southwest and northeast China showed relatively poor development during study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.