Existing devices to assist upper extremity (UE) movement in infants with or at risk for motor impairments remain limited and are mainly passive devices. The aim of this project was to develop and assess the validity and reliability of the first-actuated wearable device for this population. A wearable device consisting of four pneumatic actuators (two per arm) was developed and tested on a custom-built physical model with articulated joints (four degrees-of-freedom (DOFs) per arm) based on an average 12-month-old infant's upper body. The device actively controls 2DOFs per arm (one at the elbow and one at the shoulder) and does not prohibit motion about the remaining non-actuated DOFs. Three distinct device actuator synergies, that resemble muscle recruitment strategies, were evaluated in a vertical reaching task using one arm and both arms. The device was assessed for its performance, wearability, and safety. Performance was assessed via the average duration, smoothness, and repeatability of reaching movements, and maximum range of motion per actuated joint. Wearability was assessed via kinematic compatibility to infant reaching trajectories. Safety was assessed via actuator durability. Results demonstrate the efficacy of the device and reveal key insights for further improvements.
Micro Aerial Vehicles (MAVs) often face a high risk of collision during autonomous flight, particularly in cluttered and unstructured environments. To mitigate the collision impact on sensitive onboard devices, resilient MAVs with mechanical protective cages and reinforced frames are commonly used. However, compliant and impact-resilient MAVs offer a promising alternative by reducing the potential damage caused by impacts. In this study, we present novel findings on the impact-resilient capabilities of MAVs equipped with passive springs in their compliant arms. We analyze the effect of compliance through dynamic modeling and demonstrate that the inclusion of passive springs enhances impact resilience. The impact resilience is extensively tested to stabilize the MAV following wall collisions under high-speed and large-angle conditions. Additionally, we provide comprehensive comparisons with rigid MAVs to better determine the tradeoffs in flight by embedding compliance onto the robot's frame.
Abstract-Repetitive control (RC) with linear phase lead compensation provides a simple but very effective control solution for any periodic signal with a known period. Multirate repetitive control (MRC) with a downsampling rate can reduce the need of memory size and computational cost, and then leads to a more feasible design of the plug-in repetitive control systems in practical applications. However, with fixed sampling rate, both MRC and its linear phase lead compensator are sensitive to the ratio of the sampling frequency to the frequency of interested periodic signals: (1) MRC might fails to exactly compensate the periodic signal in the case of a fractional ratio; (2) linear phase lead compensation might fail to enable MRC to achieve satisfactory performance in the case of a low ratio. In this paper, a universal fractional-order design of linear phase lead compensation MRC is proposed to tackle periodic signals with high accuracy, fast dynamic response, good robustness, and cost-effective implementation regardless of the frequency ratio, which offers a unified framework for housing various RC schemes in extensive engineering application. An application example of programmable AC power supply is explored to comprehensively testify the effectiveness of the proposed control scheme.Index Terms-repetitive control, DC/AC inverter, multirate repetitive control, phase lead compensation, Lagrange interpolation polynomial, programmable AC power supply
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.