Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells/multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Using single cell transcriptome profiling of ~140,000 liver and ~74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the impact of tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, NK and ILC precursors in the yolk sac. We demonstrate a shift in fetal liver haematopoietic composition during gestation away from being erythroid-predominant, accompanied by a parallel change in HSC/MPP differentiation potential, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a valuable reference for harnessing the therapeutic potential of HSC/MPPs.
Motivation Increasing numbers of large scale single cell RNA-Seq projects are leading to a data explosion, which can only be fully exploited through data integration. A number of methods have been developed to combine diverse datasets by removing technical batch effects, but most are computationally intensive. To overcome the challenge of enormous datasets, we have developed BBKNN, an extremely fast graph-based data integration algorithm. We illustrate the power of BBKNN on large scale mouse atlasing data, and favourably benchmark its run time against a number of competing methods. Availability and implementation BBKNN is available at https://github.com/Teichlab/bbknn, along with documentation and multiple example notebooks, and can be installed from pip. Supplementary information Supplementary data are available at Bioinformatics online.
Single-cell transcriptomics is a versatile tool for exploring heterogeneous cell populations, but as with all genomics experiments, batch effects can hamper data integration and interpretation. The success of batch-effect correction is often evaluated by visual inspection of low-dimensional embeddings, which are inherently imprecise. Here we present a user-friendly, robust and sensitive k-nearest-neighbor batch-effect test (kBET; https://github.com/theislab/kBET) for quantification of batch effects. We used kBET to assess commonly used batch-regression and normalization approaches, and to quantify the extent to which they remove batch effects while preserving biological variability. We also demonstrate the application of kBET to data from peripheral blood mononuclear cells (PBMCs) from healthy donors to distinguish cell-type-specific inter-individual variability from changes in relative proportions of cell populations. This has important implications for future data-integration efforts, central to projects such as the Human Cell Atlas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.