Histone deacetylase 6 (HDAC6) is a potential therapeutic target for treating several diseases. A recent study revealed that HDAC6 is important for NLRP3 inflammasome activation, suggesting that targeting HDAC6 could be useful for treating many inflammatory disorders. Using the proteolysis targeting chimera (PROTAC) strategy, we herein report an HDAC6 degrader with low cytotoxicity by tethering a selective HDAC6 inhibitor derived from a natural product, indirubin, with pomalidomide, a CRBN E3 ligand. Our HDAC6 degrader efficiently and selectively decreased HDAC6 levels in several cell lines, including activated THP-1 cells. Application of this HDAC6 degrader attenuated NLRP3 inflammasome activation in LPS-induced mice, which for the first time demonstrates that HDAC6 PROTAC could be a novel strategy to treat NLRP3 inflammasome-associated diseases.
To utilize the unique scaffold of a natural product indirubin, we herein adopted the strategy of combined pharmacophores to design and synthesize a series of novel indirubin derivatives as dual inhibitors against cyclin-dependent kinase (CDK) and histone deacetylase (HDAC). Among them, the lead compound 8b with remarkable CDK2/4/6 and HDAC6 inhibitory activity of IC 50 = 60.9 ± 2.9, 276 ± 22.3, 27.2 ± 4.2, and 128.6 ± 0.4 nM, respectively, can efficiently induce apoptosis and S-phase arrest in several cancer cell lines. In particular, compound 8b can prevent the proliferation of a non-small-cell lung cancer cell line (A549) through the Mcl-1/XIAP/PARP axis, in agreement with the unique modes of action of the combined agents of HDAC inhibitors and CDK inhibitors. In an A549 xerograph model, compound 8b showed significant antitumor efficacy correlated with its dual inhibition. Our data demonstrated that compound 8b as a single agent could be a promising drug candidate for cancer therapy in combination with CDK and HDAC inhibitors.
Background and aimSeveral dysregulated microRNAs (miRNAs) have been implicated in the pathogenesis of cholangiocarcinoma (CCA); however, small sample sizes and invariable research designs are limitations, hindering a thorough analysis of miRNAs as diagnostic and prognostic tools for CCA. This study aimed to systematically summarize the clinical value of miRNAs in human CCA both for all available miRNAs and single miRNA with multiple researches.MethodsPooled parameters included the area under the curve (AUC), sensitivity, specificity, and hazard ratios (HRs) to separately determine overall diagnostic and prognostic performance. Subgroup and sensitivity analyses were performed only in the event of heterogeneity. Thirty-four studies including 12 diagnostic studies and 22 prognostic studies were eligible for inclusion in this meta-analysis.ResultsWe observed that miR-21, miR-26, miR-483, miR-106a, miR-150, miR-192, and miR-194 were employed for distinguishing patients with CCA from healthy controls. Pooled sensitivity, specificity, and AUC were 0.82 (95% confidence interval [CI] 0.77–0.86), 0.83 (95% CI 0.75–0.89), and 0.88 (95% CI 0.85–0.91), respectively. Abnormal expression of miR-21, miR-26a, miR-192, miR-200c, miR-221, miR-29a, miR-191, miR-181c, miR-34a, miR-106a, miR-203, and miR-373 in patients was confirmed to associate with poor survival rate. Pooled HRs and 95% CIs were calculated using STATA, resulting in the pooled HR of 1.47 (95% CI 0.91–2.37) for overall survival (OS), 0.67 (95% CI 0.16–2.81) for disease-free survival (DFS), 2.31 (95% CI 1.59–3.36) for progression-free survival (PFS), and 2.68 (95% CI 0.88–8.15) for relapse-free survival (RFS). Thus, CCA patients with dysregulated miRNA expression were confirmed to have shorter OS, DFS, PFS, and RFS. Data regarding the diagnostic and prognostic roles of miR-21 suggested pooled diagnostic results of miR-21 for sensitivity, specificity, and AUC were 0.85 (95% CI 0.76–0.91), 0.92 (95% CI 0.81–0.97), and 0.93 (95% CI 0.91–0.95), respectively, suggesting better diagnostic performance of miR-21 compared with other miRNAs. Meanwhile, pooled prognostic result of miR-21 for HR was 1.88 (95% CI 1.41–2.51), indicating miR-21 could more appropriately predict shorter OS in patients with CCA.ConclusionmiRNAs may provide a new approach for clinical application, and miR-21 may be a promising biomarker for diagnosis and prognosis of CCA.
Alzheimer’s disease (AD) is an age-related chronic progressive neurodegenerative disease, which is the main cause of dementia in the elderly. Much evidence shows that the onset and late symptoms of AD are caused by multiple factors. Among them, aging is the main factor in the pathogenesis of AD, and the most important risk factor for AD is neuroinflammation. So far, there is no cure for AD, but the relationship between neuroinflammation and AD may provide a new strategy for the treatment of AD. We herein discussed the main etiology hypothesis of AD and the role of neuroinflammation in AD, as well as anti-inflammatory natural products with the potential to prevent and alleviate AD symptoms, including alkaloids, steroids, terpenoids, flavonoids and polyphenols, which are available with great potential for the development of anti-AD drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.