Using the single premise entailment (SPE) model to accomplish the multi-premise entailment (MPE) task can alleviate the problem that the neural network cannot be effectively trained due to the lack of labeled multi-premise training data. Moreover, the abundant judgment methods for the relationship between sentence pairs can also be applied in this task. However, the single-premise pre-trained model does not have a structure for processing multi-premise relationships, and this structure is a crucial technique for solving MPE problems. This paper proposes adding a multi-premise relationship processing module based on not changing the structure of the pre-trained model to compensate for this deficiency. Moreover, we proposed a three-step training method combining this module, which ensures that the module focuses on dealing with the multi-premise relationship during matching, thus applying the single-premise model to multi-premise tasks. Besides, this paper also proposes a specific structure of the relationship processing module, i.e., we call it the attention-backtracking mechanism. Experiments show that this structure can fully consider the context of multi-premise, and the structure combined with the three-step training can achieve better accuracy on the MPE test set than other transfer methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.