In this overview paper, data-driven learning model-based cooperative localization and location data processing are considered, in line with the emerging machine learning and big data methods. We first review (1) state-of-the-art algorithms in the context of federated learning, (2) two widely used learning models, namely the deep neural network model and the Gaussian process model, and (3) various distributed model hyper-parameter optimization schemes. Then, we demonstrate various practical use cases that are summarized from a mixture of standard, newly published, and unpublished works, which cover a broad range of location services, including collaborative static localization/fingerprinting, indoor target tracking, outdoor navigation using low-sampling GPS, and spatio-temporal wireless traffic data modeling and prediction. Experimental results show that near centralized data fitting-and prediction performance can be achieved by a set of collaborative mobile users running distributed algorithms. All the surveyed use cases fall under our newly proposed Federated Localization (FedLoc) framework, which targets on collaboratively building accurate location services without sacrificing user privacy, in particular, sensitive information related to their geographical trajectories. Future research directions are also discussed at the end of this paper.
The integration of Distributed Energy Resources (DERs) introduces a non-conventional two-way power flow which cannot be captured well by traditional model-based techniques. This brings an unprecedented challenge in terms of the accurate localization of faults and proper actions of the protection system. In this paper, we propose a data-driven fault localization strategy based on multi-level system regionalization and the quantification of fault detection results in all subsystems/subregions. This strategy relies on the tree segmentation criterion to divide the entire system under study into several subregions, and then combines Support Vector Data Description (SVDD) and Kernel Density Estimation (KDE) to find the confidence level of fault detection in each subregion in terms of their corresponding p-values. By comparing the p-values, one can accurately localize the faults. Experiments demonstrate that the proposed data-driven fault localization can greatly improve the accuracy of fault localization for distribution systems with high DER penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.