Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)-immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3(+) regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.
Most tissue-resident macrophage (RTM) populations are seeded by waves of embryonic hematopoiesis and are self-maintained independently of a bone marrow contribution during adulthood. A proportion of RTMs, however, is constantly replaced by blood monocytes, and their functions compared to embryonic RTMs remain unclear. The kinetics and extent of the contribution of circulating monocytes to RTM replacement during homeostasis, inflammation, and disease are highly debated. Here, we identified Ms4a3 as a specific gene expressed by granulocyte-monocyte progenitors (GMPs) and subsequently generated Ms4a3 TdT reporter, Ms4a3 Cre , and Ms4a3 CreERT2 fate-mapping models. These models traced efficiently monocytes and granulocytes, but no lymphocytes or tissue dendritic cells. Using these models, we precisely quantified the contribution of monocytes to the RTM pool during homeostasis and inflammation. The unambiguous identification of monocyte-derived cells will permit future studies of their function under any condition.
Foxp3+ regulatory T cells (Tregs) play a critical role in preventing autoimmune disease by limiting the effector activity of conventional T cells that have escaped thymic negative selection or cell-autonomous peripheral inactivation1–3. However, despite the substantial information available about the molecular players mediating Treg functional interference with auto-aggressive effector responses4,5, the relevant cellular events in intact tissues remain largely unexplored and the issues of whether Tregs prevent activation of self-specific T cells or function primarily to limit damage from such cells have not been addressed6. Here we have employed multiplex, high-resolution, quantitative imaging to reveal that within most secondary lymphoid tissues, Tregs expressing phosphorylated STAT5 (pSTAT5) and high amounts of the suppressive molecules CD73 and CTLA-4 exist in discrete clusters with rare IL-2 producing effector T cells activated by self-antigens. This local IL-2 production induces the STAT5 phosphorylation in the Tregs and is part of a feedback circuit that augments the suppressive properties of the Tregs to limit further autoimmune responses. Inducible ablation of TCR expression by Tregs reduces their regulatory capacity and disrupts their localization in such clusters, resulting in uncontrolled effector T cell responses. Our data thus reveal that autoreactive T cells reach a state of activation and cytokine gene induction on a regular basis, with physically co-clustering, TCR-stimulated Tregs responding to this activation in a feedback manner to suppress incipient autoimmunity and maintain immune homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.