Porous (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) piezoelectric ceramics with an oriented directional hole structure were prepared by using the tertbutyl alcohol (TBA)-based freeze-casting method. The influences of sintering temperatures on the microstructure and piezoelectric properties of porous BCZT ceramics were investigated both perpendicular and parallel to the freezing direction. With the increase in sintering temperatures and the porosities decreased from 58% to 42%, the compressive strength increased from 14.0 MPa to 25.0 MPa. In addition, the d33 value of 407 pC/N for the sample sintered at 1400 °C was obtained parallel to the freezing direction, which was 1.40 times that of the other direction.
The 3YSZ/40 wt% Al2O3 composites were prepared by flash sintering at a low furnace temperature (700 °C). The effects of the current density on the relative density and Vickers hardness of the composites were systematically investigated. The results showed that the relative densities and Vickers hardness of the samples increased gradually with the increasing of the current densities, and the relative density was as high as 94.2%. The Vickers hardness of 11.3 GPa was obtained under a current density of 102 mA/mm2. Joule heating and defects generation are suggested to be the main causes of rapid densification in flash sintering. The microstructure of the molten zone showed the formation of eutectic structures in the composite, suggesting that grain boundary overheating may have contributed to the formation of the molten zone.
High entropy perovskite oxides (HEPOs) were a class of advanced ceramic materials, which had attracted much scientific attention in recent years. However, the effect of factors affecting the phase stability of high entropy perovskite oxides was still controversial. Herein, 17 kinds of A-site HEPOs were synthesized by solid-state methods, and several criteria for the formation of HEPOs and phase stability were investigated. Single-phase solid solutions were synthesized in 12 kinds of subsystems. The results show that the phase stability of a single-phase solid solution was affected by the size disorder and configurational entropy. The electronegativity difference was the key parameter to predict the evolution of the cubic/tetragonal phase, rather than the tolerance factor. Cubic HEPOs were easily formed when the electronegativity difference was <0.4, while the tetragonal HEPOs were easily formed when the electronegativity difference was ≥0.4. This study can further broaden the family of HEPOs and is expected to design the phase stability of HEPOs through electronegativity difference.
Preparation and properties of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics are investigated. La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 high-entropy ceramics are prepared by a traditional two-step solid-state reaction method in air. La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 single-phase powders are synthesized by calcining the mixed oxides at 1000 °C for 20 h. The high-entropy ceramics are sintered at 1350–1650 °C in a muffle furnace for 4 h by using the above powders. The phase compositions of the high-entropy ceramics at different temperatures are characterized by X-ray diffraction (XRD) with Cu Kα radiation. A field-emission scanning electron microscope with energy-dispersive spectroscopy (EDS) is used to observe the microstructures and analyze the elemental distributions. The hardness and dielectric properties are measured and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.