Dedicated short-range communication (DSRC) and 4G-LTE are two widely used candidate schemes for Connected Vehicle (CV) applications. It is thus of great necessity to compare these two most viable communication standards and clarify which one can meet the requirements of most V2X scenarios with respect to road safety, traffic efficiency, and infotainment. To the best of our knowledge, almost all the existing studies on comparing the feasibility of DRSC or LTE in V2X applications use software-based simulations, which may not represent realistic constraints. In this paper, a Connected Vehicle test-bed is established, which integrates the DSRC roadside units, 4G-LTE cellular communication stations, and vehicular on-board terminals. Three Connected Vehicle application scenarios are set as Collision Avoidance, Traffic Text Message Broadcast, and Multimedia File Download, respectively. A software tool is developed to record GPS positions/velocities of the test vehicles and record certain wireless communication performance indicators. The experiments have been carried out under different conditions. According to our results, 4G-LTE is more preferred for the nonsafety applications, such as traffic information transmission, file download, or Internet accessing, which does not necessarily require the high-speed real-time communication, while for the safety applications, such as Collision Avoidance or electronic traffic sign, DSRC outperforms the 4G-LTE.
Self-driving vehicles (SDVs) promise to considerably reduce traffic crashes. One pressing concern facing the public, automakers, and governments is "How safe is safe enough for SDVs?" To answer this question, a new expressed-preference approach was proposed for the first time to determine the socially acceptable risk of SDVs. In our between-subject survey (N = 499), we determined the respondents' risk-acceptance rate of scenarios with varying traffic-risk frequencies to examine the logarithmic relationships between the traffic-risk frequency and risk-acceptance rate. Logarithmic regression models of SDVs were compared to those of human-driven vehicles (HDVs); the results showed that SDVs were required to be safer than HDVs. Given the same traffic-risk-acceptance rates for SDVs and HDVs, their associated acceptable risk frequencies of SDVs and HDVs were predicted and compared. Two risk-acceptance criteria emerged: the tolerable risk criterion, which indicates that SDVs should be four to five times as safe as HDVs, and the broadly acceptable risk criterion, which suggests that half of the respondents hoped that the traffic risk of SDVs would be two orders of magnitude lower than the current estimated traffic risk. The approach and these results could provide insights for government regulatory authorities for establishing clear safety requirements for SDVs.
It's critical for an autonomous vehicle to acquire accurate and real-time information of the objects in its vicinity, which will fully guarantee the safety of the passengers and vehicle in various environment. 3D LIDAR can directly obtain the position and geometrical structure of the object within its detection range, while vision camera is very suitable for object recognition. Accordingly, this paper presents a novel object detection and identification method fusing the complementary information of two kind of sensors. We first utilize the 3D LIDAR data to generate accurate object-region proposals effectively. Then, these candidates are mapped into the image space where the regions of interest (ROI) of the proposals are selected and input to a convolutional neural network (CNN) for further object recognition. In order to identify all sizes of objects precisely, we combine the features of the last three layers of the CNN to extract multi-scale features of the ROIs. The evaluation results on the KITTI dataset demonstrate that : (1) Unlike sliding windows that produce thousands of candidate object-region proposals, 3D LIDAR provides an average of 86 real candidates per frame and the minimal recall rate is higher than 95%, which greatly lowers the proposals extraction time; (2) The average processing time for each frame of the proposed method is only 66.79ms, which meets the real-time demand of autonomous vehicles; (3) The average identification accuracies of our method for car and pedestrian on the moderate level are 89.04% and 78.18% respectively, which outperform most previous methods.
In this research, by taking advantage of dynamic fuel consumption–speed data from Internet of Vehicles, we develop two novel computational approaches to more accurately estimate truck fuel consumption. The first approach is on the basis of a novel index, named energy consumption index, which is to explicitly reflect the dynamic relationship between truck fuel consumption and truck drivers’ driving behaviors obtained from Internet of Vehicles. The second approach is based on a Generalized Regression Neural Network model to implicitly establish the same relationship. We further compare the two proposed models with three well‐recognized existing models: vehicle specific power (VSP) model, Virginia Tech microscopic (VT‐Micro) model, and Comprehensive Modal Emission Model (CMEM). According to our validations at both microscopic and macroscopic levels, the two proposed models have stronger performed in predicting fuel consumption in new routes. The models can be used to design more energy‐efficient driving behaviors in the soon‐to‐come era of connected and automated vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.