Dedicated short-range communication (DSRC) and 4G-LTE are two widely used candidate schemes for Connected Vehicle (CV) applications. It is thus of great necessity to compare these two most viable communication standards and clarify which one can meet the requirements of most V2X scenarios with respect to road safety, traffic efficiency, and infotainment. To the best of our knowledge, almost all the existing studies on comparing the feasibility of DRSC or LTE in V2X applications use software-based simulations, which may not represent realistic constraints. In this paper, a Connected Vehicle test-bed is established, which integrates the DSRC roadside units, 4G-LTE cellular communication stations, and vehicular on-board terminals. Three Connected Vehicle application scenarios are set as Collision Avoidance, Traffic Text Message Broadcast, and Multimedia File Download, respectively. A software tool is developed to record GPS positions/velocities of the test vehicles and record certain wireless communication performance indicators. The experiments have been carried out under different conditions. According to our results, 4G-LTE is more preferred for the nonsafety applications, such as traffic information transmission, file download, or Internet accessing, which does not necessarily require the high-speed real-time communication, while for the safety applications, such as Collision Avoidance or electronic traffic sign, DSRC outperforms the 4G-LTE.
Abstract-Most conventional heterogeneous network selection strategies applied in heterogeneous vehicular network regard the performance of each network constant in various traffic scenarios. This assumption leads such strategies to be ineffective in the real-world performancechanging scenarios. To solve this problem, we propose an optimal game approach for heterogeneous vehicular network selection under conditions in which the performance parameters of some networks are changing. Terminals attempting to switch to the network with higher evaluation is formulated as a multi-play non-cooperative game. Heterogeneous vehicular network characteristics are thoroughly accounted for to adjust the game strategy and adapt to the vehicular environment for stability and rapid convergence. A multi-play non-cooperative game model is built to formulate network selection. A probabilistic strategy is used to gradually drive players toward convergence to prevent instability. Furthermore, a system prototype was built at the Connected and Automated Vehicle Test bed of Chang'an University (CAVTest). Its corresponding test results indicate that the proposed approach can effectively suppress the ping-pong effect caused by massive handoffs due to varying network performance and thus well outperforms the single-play strategy.
Connected and automated vehicles (CAVs) have attracted much attention of researchers because of its potential to improve both transportation network efficiency and safety through control algorithms and reduce fuel consumption. However, vehicle merging at intersection is one of the main factors that lead to congestion and extra fuel consumption. In this paper, we focused on the scenario of on-ramp merging of CAVs, proposed a centralized approach based on game theory to control the process of on-ramp merging for all agents without any collisions, and optimized the overall fuel consumption and total travel time. For the framework of the game, benefit, loss, and rules are three basic components, and in our model, benefit is the priority of passing the merging point, represented via the merging sequence (MS), loss is the cost of fuel consumption and the total travel time, and the game rules are designed in accordance with traffic density, fairness, and wholeness. Each rule has a different degree of importance, and to get the optimal weight of each rule, we formulate the problem as a double-objective optimization problem and obtain the results by searching the feasible Pareto solutions. As to the assignment of merging sequence, we evaluate each competitor from three aspects by giving scores and multiplying the corresponding weight and the agent with the higher score gets comparatively smaller MS, i.e., the priority of passing the intersection. The simulations and comparisons are conducted to demonstrate the effectiveness of the proposed method. Moreover, the proposed method improved the fuel economy and saved the travel time.
Precise, reliable, and low-cost vehicular localization across a continuous spatiotemporal domain is an important problem in the field of outdoor ground vehicles. This paper proposes a visual odometry algorithm, where an ultrarobust and fast feature-matching scheme is combined with an effective antiblurring frame selection strategy. Our method follows the procedure of finding feature correspondences from consecutive frames and minimizing their reprojection error. The blurred image is a great challenge for localization with a sharp turn or fast movement. So we attempt to mitigate the impact of blur with an image singular value decomposition antiblurring algorithm. Moreover, a statistic filter of feature space displacement and circle matching are proposed to screen or prune potential matching features, so as to remove the outliers caused by mismatching. An evaluation of benchmark dataset KITTI and real outdoor data, with blur, low texture, and illumination change, demonstrates that the proposed ego-motion scheme significantly achieved performance with respect to the other state-of-the-art visual odometry approaches to a certain extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.