Materials that respond rapidly and reversibly to external stimuli currently stand among the top choices as actuators for real-world applications. Here, a series of programmable actuators fabricated as single- or bilayer elements is described that can reversibly respond to minute concentrations of acetone vapors. By using templates, microchannel structures are replicated onto the surface of two highly elastic polymers, polyvinylidene fluoride (PVDF) and polyvinyl alcohol, to induce chiral coiling upon exposure to acetone vapors. The vapomechanical coiling is reversible and can be conducted repeatedly over 100 times without apparent fatigue. If they are immersed in liquid acetone, the actuators are saturated with the solvent and temporarily lose their motility but regain their shape and activity within seconds after the solvent evaporates. The desorption of acetone from the PVDF layer is four times faster than its adsorption, and the actuator composed of a single PVDF layer maintains its ability to move over an acetone-soaked filter paper even after several days. The controllable and reproducible sensing capability of this smart material can be utilized for actuating dynamic elements in soft robotics.
Blackbody-sensitive room-temperature infrared detection is a notable development direction for future low-dimensional infrared photodetectors. However, because of the limitations of responsivity and spectral response range for low-dimensional narrow bandgap semiconductors, few low-dimensional infrared photodetectors exhibit blackbody sensitivity. Here, highly crystalline tellurium (Te) nanowires and two-dimensional nanosheets were synthesized by using chemical vapor deposition. The low-dimensional Te shows high hole mobility and broadband detection. The blackbody-sensitive infrared detection of Te devices was demonstrated. A high responsivity of 6650 A W−1 (at 1550-nm laser) and the blackbody responsivity of 5.19 A W−1 were achieved. High-resolution imaging based on Te photodetectors was successfully obtained. All the results suggest that the chemical vapor deposition–grown low-dimensional Te is one of the competitive candidates for sensitive focal-plane-array infrared photodetectors at room temperature.
2D layers of metal dichalcogenides are of considerable interest for high‐performance electronic devices for their unique electronic properties and atomically thin geometry. 2D SnS2 nanosheets with a bandgap of ≈2.6 eV have been attracting intensive attention as one potential candidate for modern electrocatalysis, electronic, and/or optoelectronic fields. However, the controllable growth of large‐size and high‐quality SnS2 atomic layers still remains a challenge. Herein, a salt‐assisted chemical vapor deposition method is provided to synthesize atomic‐layer SnS2 with a large crystal size up to 410 µm and good uniformity. Particularly, the as‐fabricated SnS2 nanosheet‐based field‐effect transistors (FETs) show high mobility (2.58 cm2 V−1 s−1) and high on/off ratio (≈108), which is superior to other reported SnS2‐based FETs. Additionally, the effects of temperature on the electrical properties are systematically investigated. It is shown that the scattering mechanism transforms from charged impurities scattering to electron–phonon scattering with the temperature. Moreover, SnS2 can serve as an ideal material for energy storage and catalyst support. The high performance together with controllable growth of SnS2 endow it with great potential for future applications in electrocatalysis, electronics, and optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.