Compared with natural images, remote sensing targets have small and dense target shapes as well as complex target backgrounds. As a result, insufficient detection accuracy and target location cannot be accurately identified. So, this paper proposes the YOLO-extract algorithm based on the YOLOv5 algorithm. Firstly, The YOLO-extract algorithm optimized the model structure of the YOLOv5 algorithm. The YOLOextract algorithm not only deleted the feature layer and prediction head with poor feature extraction ability but also a new feature extractor with stronger feature extraction ability was integrated into the network. At the same time, YOLO-extract borrowed the idea of residual network to integrate Coordinate Attention into the network. Secondly, the mixed dilated convolution was combined with the redesigned residual structure to enhance the feature and location information extraction ability of the shallow layer of the model and optimize the feature extraction ability of the model for different scale targets. Finally, drawing on the idea of α-IoU Loss, Focal-α EIoU Loss was designed to replace CIoU Loss, which makes the model bounding box regression faster and the loss lower. The experimental results on the test data set show that compared with the YOLOv5 algorithm, the YOLO-extract algorithm has a faster convergence speed, reduces the calculation amount by 45.3GFLOPs and the number of parameters by 10.526M, but increases the mAP by 8.1% and the detection speed by 3 times.
The current satellite network traffic forecasting methods cannot fully exploit the long correlation between satellite traffic sequences, which leads to large network traffic forecasting errors and low forecasting accuracy. To solve these problems, we propose a satellite network traffic forecasting method with an improved gate recurrent unit (GRU). This method combines the attention mechanism with GRU neural network, fully mines the characteristics of self-similarity and long correlation among traffic data sequences, pays attention to the importance of traffic data and hidden state, learns the time-dependent characteristics of input sequences, and mines the interdependent characteristics of data sequences to improve the prediction accuracy. Particle Swarm Optimization (PSO) algorithm is used to obtain the best network model Hyperparameter and improve the prediction efficiency. Simulation results show that the proposed method has the best fitting effect with real traffic data, and the errors are reduced by 26.9%, 37.2%, and 57.8% compared with the GRU, Support Vector Machine (SVM), and Fractional Autoregressive Integration Moving Average (FARIMA) models, respectively.
With the rapid development of satellite communication, the number of users and available bandwidth of satellite services are experiencing a significant growth period. Aiming at the above problems, a spectrum allocation scheme of cognitive satellite networks based on stable matching is proposed to improve spectrum utilization. Firstly, the satellite-ground integrated spectrum resource sharing model is established, and the scenario of cognitive satellite downlink using the idle spectrum of the ground network is analyzed. According to the transmission characteristics of satellite communication, the utility function of cognitive satellite is given, and users can form a stable match between primary users (PUs) and secondary users (SUs) through independent negotiation. This spectrum allocation algorithm has low complexity and can adapt to dynamic networks. Simulation results show that the performance of the proposed algorithm is close to the optimal scheme, and the spectrum utilization rate is significantly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.