The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998–2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002–2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability.
Surface water bodies, such as rivers, lakes, and reservoirs, play an irreplaceable role in global ecosystems and climate systems. Sentinel-2 imagery provides new high-resolution satellite remote sensing data. Based on the analysis of the spectral characteristics of the Sentinel-2 satellite, a novel water index called the Sentinel-2 water index (SWI) that is based on the vegetation-sensitive red-edge band (Band 5) and shortwave infrared (Band 11) bands was developed. Four representative water body types, namely, Taihu Lake, Yangtze River, Chaka Salt Lake, and Chain Lake, were selected as study areas to conduct a water body extraction performance comparison with the normalized difference water index (NDWI). We found that (1) the contrast value of the SWI was larger than that of the NDWI in terms of various water body types, including purer water, turbid water, salt water, and floating ice, which suggested that the SWI could achieve better enhancement performance for water bodies. An (2) effective water body extraction method was proposed by integrating the SWI and Otsu algorithm, which could accurately extract various water body types with high overall accuracy. The (3) method effectively extracted large water bodies and wide river channels by suppressing shadow noise in urban areas. Our results suggested that the novel method can achieve efficient water body extraction for rapidly and accurately extracting various water bodies from Sentinel-2 data and the novel method has application potential for larger-scale surface water mapping.
Abstract:In recent years, the increased intensity and duration of droughts have dramatically altered the structure and function of grassland ecosystems, which have been forced to adapt to this change in climate. Combinations of global change drivers such as elevated atmospheric CO 2 concentration, warming, nitrogen (N) deposition, grazing, and land-use change have influenced the impact that droughts have on grassland C cycling. This influence, to some extent, can modify the relationship between droughts and grassland carbon (C) cycling in the multi-factor world. Unfortunately, prior reviews have been primarily anecdotal from the 1930s to the 2010s. We investigated the current state of the study on the interactive impacts of multiple factors under drought scenarios in grassland C cycling and provided scientific advice for dealing with droughts and managing grassland C cycling in a multi-factor world. Currently, adequate information is not available on the interaction between droughts and global change drivers, which would advance our understanding of grassland C cycling responses. It was determined that future experiments and models should specifically test how droughts regulate grassland C cycling under global changes. Previous multi-factor experiments of current and future global change conditions have studied various drought scenarios poorly, including changes in precipitation frequency and amplitude, timing, and interactions with other global change drivers. Multi-factor experiments have contributed to quantifying these potential changes and have provided important information on how water affects ecosystem processes under global change. There is an urgent need to establish a systematic framework that can assess ecosystem dynamic responses to droughts under current and future global change and human activity, with a focus on the combined effects of droughts, global change drivers, and the corresponding hierarchical responses of an ecosystem.
Research on vegetation variation is an important aspect of global warming studies. The quantification of the relationship between vegetation change and climate change has become a central topic and challenge in current global change studies. The source region of the Yellow River (SRYR) is an appropriate area to study global change because of its unique natural conditions and vulnerable terrestrial ecosystem. Therefore, we chose the SRYR for a case study to determine the driving forces behind vegetation variation under global warming. Using the Normalized Difference Vegetation Index (NDVI) and climate data, we investigated the NDVI variation in the growing season in the region from 1998 to 2016 and its response to climate change based on trend analysis, the Mann–Kendall trend test and partial correlation analysis. Finally, an NDVI–climate mathematical model was built to predict the NDVI trends from 2020 to 2038. The results indicated the following: (1) over the past 19 years, the NDVI showed an increasing trend, with a growth rate of 0.00204/a. There was an upward trend in NDVI over 71.40% of the region. (2) Both the precipitation and temperature in the growing season showed upward trends over the last 19 years. NDVI was positively correlated with precipitation and temperature. The areas with significant relationships with precipitation covered 31.01% of the region, while those with significant relationships with temperature covered 56.40%. The sensitivity of the NDVI to temperature was higher than that to precipitation. Over half (56.58%) of the areas were found to exhibit negative impacts of human activities on the NDVI. (3) According to the simulation, the NDVI will increase slightly over the next 19 years, with a linear tendency of 0.00096/a. From the perspective of spatiotemporal changes, we combined the past and future variations in vegetation, which could adequately reflect the long-term vegetation trends. The results provide a theoretical basis and reference for the sustainable development of the natural environment and a response to vegetation change under the background of climate change in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.