Metal-organic frameworks (MOFs) are a highly versatile class of ordered porous materials, which hold great promise for different biomedical applications, including antibacterial therapy. In light of the antibacterial effects, these nanomaterials can be attractive for several reasons. First, MOFs exhibit a high loading capacity for numerous antibacterial drugs, including antibiotics, photosensitizers, and/or photothermal molecules. The inherent micro- or meso-porosity of MOF structures enables their use as nanocarriers for simultaneous encapsulation of multiple drugs resulting in a combined therapeutic effect. In addition to being encapsulated into an MOF’s pores, antibacterial agents can sometimes be directly incorporated into an MOF skeleton as organic linkers. Next, MOFs contain coordinated metal ions in their structure. Incorporation of Fe2/3+, Cu2+, Zn2+, Co2+, and Ag+ can significantly increase the innate cytotoxicity of these materials for bacteria and cause a synergistic effect. Finally, abundance of functional groups enables modifying the external surface of MOF particles with stealth coating and ligand moieties for improved drug delivery. To date, there are a number of MOF-based nanomedicines available for the treatment of bacterial infections. This review is focused on biomedical consideration of MOF nano-formulations designed for the therapy of intracellular infections such as Staphylococcus aureus, Mycobacterium tuberculosis, and Chlamydia trachomatis. Increasing knowledge about the ability of MOF nanoparticles to accumulate in a pathogen intracellular niche in the host cells provides an excellent opportunity to use MOF-based nanomedicines for the eradication of persistent infections. Here, we discuss advantages and current limitations of MOFs, their clinical significance, and their prospects for the treatment of the mentioned infections.
Metal-organic framework nanoparticles (nanoMOFs) are a promising class of hybrid nanomaterials for biomedical applications. Some of them, including biodegradable porous iron carboxylates are proposed for encapsulation and delivery of antibiotics. Due to the high drug loading capacity and fast internalization kinetics nanoMOFs are more beneficial for the treatment of intracellular bacterial infections compared to free antibacterial drugs, which poorly accumulate inside the cells because of the inability to cross membrane barriers or have low intracellular retention. However, nanoparticle internalization does not ensure their accumulation in the cell compartment that shelters a pathogen. This study shows the availability of MIL-100(Fe) MOF nanoparticles to co-localize with Chlamydia trachomatis, an obligate intracellular bacterium, in the infected RAW264.7 macrophages. Furthermore, nanoMOFs loaded with photosensitizer methylene blue (MB) exhibit complete photodynamic inactivation of Chlamydia trachomatis growth. Simultaneous infection and treatment of RAW264.7 cells with empty nanoMOFs resulted in a 3-fold decrease in bacterial load that indicates an intrinsic anti-chlamydial effect of this iron-containing nanomaterial. Thus, our findings suggest the use of iron-based nanoMOFs as a promising drug delivery platform, which contributes to antibacterial effect, for the treatment of chlamydial infections.
A new process, PMOFSA, is described that opens the way for a one-pot straightforward and versatile manufacture of polymer-MOFs nanoparticles in water. It can be expected that this study will...
Metal–organic framework nanoparticles (nanoMOFs) are promising nanomaterials for biomedical applications. Some of them, including biodegradable porous iron carboxylates are proposed for encapsulation and delivery of antibiotics. Due to the high drug loading capacity and fast internalization kinetics, nanoMOFs are more beneficial for the treatment of intracellular bacterial infections compared to free antibacterial drugs, which poorly accumulate inside the cells because of the inability to cross membrane barriers or have low intracellular retention. However, nanoparticle internalization does not ensure their accumulation in the cell compartment that shelters a pathogen. This study shows the availability of MIL-100(Fe)-based MOF nanoparticles to co-localize with Chlamydia trachomatis, an obligate intracellular bacterium, in the infected RAW264.7 macrophages. Furthermore, nanoMOFs loaded with photosensitizer methylene blue (MB) exhibit complete photodynamic inactivation of C. trachomatis growth. Simultaneous infection and treatment of RAW264.7 cells with empty nanoMOFs resulted in a bacterial load reduction from 100 to 36% that indicates an intrinsic anti-chlamydial effect of this iron-containing nanomaterial. Thus, our findings suggest the use of iron-based nanoMOFs as a promising drug delivery platform, which contributes to antibacterial effect, for the treatment of chlamydial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.