We combined reflection difference microscopy, electron transport measurements, and atomic force microscopy to characterize the mechanical and electrical anisotropy of few-layer black phosphorus. We were able to identify the lattice orientations of the two-dimensional material and construct suspended structures aligned with specific crystal axes. The approach allowed us to probe the anisotropic mechanical and electrical properties along each lattice axis in separate measurements. We measured the Young's modulus of few-layer black phosphorus to be 58.6 ± 11.7 and 27.2 ± 4.1 GPa in zigzag and armchair directions. The breaking stress scaled almost linearly with the Young's modulus and was measured to be 4.79 ± 1.43 and 2.31 ± 0.71 GPa in the two directions. We have also observed highly anisotropic transport behavior in black phosphorus and derived the conductance anisotropy to be 63.7%. The test results agreed well with theoretical predictions. Our work provided very valuable experimental data and suggested an effective characterization means for future studies on black phosphorus and anisotropic two-dimensional nanomaterials in general.
The past few decades have witnessed a substantial increase in terahertz (THz) research. Utilizing THz waves to transmit communication and imaging data has created a high demand for phase and amplitude modulation. However, current active THz devices, including modulators and switches, still cannot meet THz system demands. Double-channel heterostructures, an alternative semiconductor system, can support nanoscale two-dimensional electron gases (2DEGs) with high carrier concentration and mobility and provide a new way to develop active THz devices. In this Letter, we present a composite metamaterial structure that combines an equivalent collective dipolar array with a double-channel heterostructure to obtain an effective, ultrafast, and all-electronic grid-controlled THz modulator. Electrical control allows for resonant mode conversion between two different dipolar resonances in the active device, which significantly improves the modulation speed and depth. This THz modulator is the first to achieve a 1 GHz modulation speed and 85% modulation depth during real-time dynamic tests. Moreover, a 1.19 rad phase shift was realized. A wireless free-space-modulation THz communication system based on this external THz modulator was tested using 0.2 Gbps eye patterns. Therefore, this active composite metamaterial modulator provides a basis for the development of effective and ultrafast dynamic devices for THz wireless communication and imaging systems.
The unique properties of two dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D nanomaterial sensors suffer very long recovery time due to slow molecular desorption at room temperature. Here, we report a highly sensitive molybdenum ditelluride (MoTe 2 ) gas sensor for NO 2 and NH 3 detection with greatly enhanced recovery rate. The effects of gate bias on sensing performance have been systematically studied. It is found that the recovery kinetics can be effectively adjusted by biasing the sensor to different gate voltages. Under the optimum biasing potential, the MoTe 2 sensor can achieve more than 90% recovery after each sensing cycle well within 10 min at room temperature. The results demonstrate the potential of MoTe 2 as a promising candidate for high-performance chemical sensors. The idea of exploiting gate bias to adjust molecular desorption kinetics can be readily applied to much wider sensing platforms based on 2D nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.