Cytokinin (CK) is a vital plant hormone that controls many aspects of growth and development in plants. Nitrogen (N) is the indispensable macronutrient needed in plants and also one of the most important limiting factors for plant growth. This study was designed to investigate the simultaneous effects of CK and N on the visual turf quality and antioxidant metabolism of drought-stressed creeping bentgrass (Agrostis stolonifera L.). ‘PennA-4’ creeping bentgrass treated with trans-zeatin riboside at three rates of CK concentrations of 0, 10 and 100 μM (designated by CK0, 10, and 100) and two nitrogen rates with 2.5 and 7.5 kg N·ha-1 every 15 days (designated by low and high N) in a complete factorial arrangement was grown under two soil moisture regimes: well-watered and drought stress. Exogenous CK improved turf quality and delayed leaf wilting under drought stress, especially under high N. The grasses treated with CK10 and CK100 had lower O2- production and H2O2 concentration than those without CK treatment. The CK100 treatment enhanced the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD) by 25%, 22%, 17% and 24%, respectively, relative to CK0. Moreover, the activity changes of the antioxidant enzyme isoforms were more significant under high N condition relative to low N condition. Our results demonstrated the beneficial impacts of CK and N on physiological reactions, especially antioxidant metabolism, and foliar application of CK at 10 or 100 μM plus 7.5 kg ha-1 N biweekly may improve drought stress resistance of creeping bentgrass.
A novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene was cloned in this study and its overexpression caused salt sensitivity in transgenic Arabidopsis. Glycine-rich RNA-binding proteins (GRPs) play crucial roles in diverse plant developmental processes. However, the mechanisms and functions of GRPs in salinity stress responses remain largely unknown. In this study, rapid amplification of cDNA end (RACE) PCR methods was adopted to isolate ZjGRP from Zosyia japonica, a salt-tolerant grass species. ZjGRP cDNA was 456 bp in length, corresponding to 151 amino acids. ZjGRP was localized in the nucleus and cytoplasm, and was found particularly abundantly in stomatal guard cells. Quantitative real-time PCR showed that ZjGRP was expressed in the roots, stems, and leaves of Zoysia japonica, with the greatest expression seen in the fast-growing leaves. Furthermore, expression of ZjGRP was strongly induced by treatment with NaCl, ABA, MeJA, and SA. Overexpression of ZjGRP in Arabidopsis reduced the rate of germination and retarded seedling growth. ZjGRP-overexpressing Arabidopsis thaliana exhibited weakened salinity tolerance, likely as a result of effects on ion transportation, osmosis, and antioxidation. This study indicates that ZjGRP plays an essential role in inducing salt sensitivity in transgenic plants.
Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well-studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homolog of AtNYE1 from Arabidopsis thaliana. Over expression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants.
Background Carex L. is one of the largest genera in the Cyperaceae family and an important vascular plant in the ecosystem. However, the genetic background of Carex is complex and the classification is not clear. In order to investigate the gene function annotation of Carex, RNA-sequencing analysis was performed. Simple sequence repeats (SSRs) were generated based on the Illumina data and then were utilized to investigate the genetic characteristics of the 79 Carex germplasms. Results In this study, 36,403 unigenes with a total length of 41,724,615 bp were obtained and annotated based on GO, KOG, KEGG, NR databases. The results provide a theoretical basis for gene function exploration. Out of 8776 SSRs, 96 pairs of primers were randomly selected. One hundred eighty polymorphic bands were amplified with a polymorphism rate of 100% based on 42 pairs of primers with higher polymorphism levels. The average band number was 4.3 per primer, the average distance value was 0.548, and the polymorphic information content was ranged from 0.133 to 0.494. The number of observed alleles (Na), effective alleles (Ne), Nei’s (1973) gene diversity (H), and the Shannon information index (I) were 2.000, 1.376, 0.243, and 0.391, respectively. NJ clustering divided into three groups and the accessions from New Zealand showed a similar genetic attribute and clustered into one group. UPGMA and PCoA analysis also revealed the same result. The analysis of molecular variance (AMOVA) revealed a superior genetic diversity within accessions than between accessions based on geographic origin cluster and NJ cluster. What’s more, the fingerprints of 79 Carex species are established in this study. Different combinations of primer pairs can be used to identify multiple Carex at one time, which overcomes the difficulties of traditional identification methods. Conclusions The transcriptomic analysis shed new light on the function categories from the annotated genes and will facilitate future gene functional studies. The genetic characteristics analysis indicated that gene flow was extensive among 79 Carex species. These markers can be used to investigate the evolutionary history of Carex and related species, as well as to serve as a guide in future breeding projects.
Background: Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. Results: Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme's higher salinity tolerance is associated with higher Na + and Ca 2+ accumulation under normal conditions and further increase of Na + under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K + retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na + toxicity. We sequenced the transcriptome of the two cultivars under both normal and salttreated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum's transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. "Oxidation-reduction process" and "nucleic acid binding" are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca 2+ signaling transduction out of Na + accumulation, which may be another contributor to Supreme's higher salinity tolerance. Conclusion: Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.