Purpose: Non-small cell lung cancer (NSCLC) with KRAS mutation may be resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). This study aims to evaluate a plasma-based KRAS mutation analysis and the clinical significance of plasma KRAS mutation as a predictive marker for tumor resistance to EGFR-TKIs in patients with NSCLC.Experimental Design: DNA extracted from plasma and matched tumor tissues were obtained from 273 patients with advanced stage NSCLC. Patients were followed up prospectively for treatment outcomes. KRAS mutations in codon 12 and 13 were detected using PCR-restriction fragment length polymorphism. Mutations in plasma and matched tumors were compared. Associations between KRAS mutation status and patients' clinical outcomes were analyzed.Results: KRAS mutation was found in 35 (12.8%) plasma samples and 30 (11.0%) matched tumor tissues. The consistency of KRAS mutations between plasma and tumors is 76.7% (23 of 30; κ = 0.668; P < 0.001). Among 120 patients who received EGFR-TKI treatment, the response rate was only 5.3% (1 of 19) for patients with plasma KRAS mutation compared with 29.7% for patients with no KRAS mutation in plasma DNA (P = 0.024). The median progression-free survival time of patients with plasma KRAS mutation was 2.5 months compared with 8.8 months for patients with wild-type KRAS (P < 0.001).Conclusions: KRAS mutation in plasma DNA correlates with the mutation status in the matched tumor tissues of patients with NSCLC. Plasma KRAS mutation status is associated with a poor tumor response to EGFR-TKIs in NSCLC patients and may be used as a predictive marker in selecting patients for such treatment. Clin Cancer Res; 16(4); 1324-30. ©2010 AACR.Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) such as gefitinib and erlotinib are selective TKIs that can block the intracellular receptor binding sites of ATP, thus inhibiting the downstream signaling transmission. Several EGFR-TKIs have been approved as second-or third-line agents for advanced non-small cell lung cancer (NSCLC) patients who failed in platinumbased chemotherapy (1, 2).The discovery that EGFR tyrosine kinase domain mutations were strongly associated with greater sensitivity of NSCLC to EGFR-TKIs in vitro and higher response rates in clinical studies provided rationale for using molecular markers to identify patients who are most likely to benefit from EGFR-TKI therapy. Subsequent prospective studies focusing on exploring the possibility of EGFR-TKIs as first-line therapy, such as IPASS (IRESSA Pan-Asia Study, a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced NSCLC in Asia) and the Spanish Lung Cancer Group trial (a multicenter prospective phase II trial of customized erlotinib for advanced NSCLC patients with EGFR mutations), have shown an outstanding survival benefit for patients with EGFR mutant tumors who received first-line EGFR-TKI therapy, which is superior to the outc...
PurposeWe aimed to investigate the feasibility of droplet digital PCR (ddPCR) for the quantitative and dynamic detection of EGFR mutations and next generation sequencing (NGS) for screening EGFR-tyrosine kinase inhibitors (EGFR-TKIs) resistance-relevant mutations in circulating tumor DNA (ctDNA) from advanced lung adenocarcinoma (ADC) patients.ResultsDetection limit of EGFR mutation in ctDNA by ddPCR was 0.04%. Taking the EGFR mutation in tumor tissue as the golden standard, the concordance of EGFR mutations detected in ctDNA was 74% (54/73). Patients with EGFR mutation in ctDNA (n = 54) superior progression-free survival (PFS, median, 12.6 vs. 6.7 months, P < 0.001) and overall survival (OS, median, 35.6 vs. 23.8 months, P = 0.028) compared to those with EGFR wild type in ctDNA (n = 19). Patients with high EGFR-mutated abundance in ctDNA (> 5.15%) showed better PFS compared to those with low EGFR mutated abundance (≤ 5.15%) (PFS, median, 15.4 vs. 11.1 months, P = 0.021). NGS results showed that 66.6% (8/12) total mutational copy number were elevated and 76.5% (26/34) mutual mutation frequency increased after disease progression.MethodsSeventy-three advanced ADC patients with tumor tissues carrying EGFR mutations and their matched pre- and post-EGFR-TKIs plasma samples were enrolled in this study. Absolute quantities of plasma EGFR mutant and wild-type alleles were measured by ddPCR. Multi-genes testing was performed using NGS in 12 patients.ConclusionsDynamic and quantitative analysis of EGFR mutation in ctDNA could guide personalized therapy for advanced ADC. NGS shows good performance in multiple genes testing especially novel and uncommon genes.
Pulmonary sarcomatoid carcinoma (PSC) is a rare subtype of lung cancer with poor prognosis. Here, we perform multi-omics analysis of 56 PSC samples, 14 of which are microdissected to analyze intratumoral heterogeneity. We report the mutational landscape of PSC. The epithelial and sarcomatoid components share numerous genomic alterations, indicating a common progenitor. We find that epithelial-mesenchymal transition (EMT) plays important roles in the carcinogenesis of PSC. The pan-cancer analysis reveals high tumor mutation burden and leukocyte fraction of PSC. Integrated molecular classification shows three subgroups with distinct biology, prognosis and potential therapeutic strategies. Actionable mutations are enriched in C1 and C2, patients in C3 have a significantly longer overall survival, and C1 and C2 exhibit T-cell inflamed microenvironments. The three subgroups show molecular similarities to specific subtypes of conventional lung cancer. In conclusion, our study reveals the molecular characteristics and provides entry points for the treatment of PSC.
BackgroundEGFR mutation is a strong predictive factor of EGFR-TKIs therapy. However, at least 10% of patients with EGFR wild-type are responsive to TKIs, suggesting that other determinants of outcome besides EGFR mutation might exist. We hypothesized that activation of phosphorylated EGFR could be a potential predictive biomarker to EGFR-TKIs treatment among patients in wild-type EGFR.MethodTotal of 205 stage IIIb and IV NSCLC patients, tissue samples of whom were available for molecular analysis, were enrolled in this study. The phosphorylation of EGFR at tyrosine 1068 (pTyr1068) and 1173 (pTyr1173) were assessed by immunohistochemistry, and EGFR mutations were detected by denaturing high performance liquid chromatograph (DHPLC).ResultsAmong 205 patients assessable for EGFR mutation and phosphorylation analysis, 92 (44.9%) were EGFR mutant and 165 patients (57.6%) had pTyr1173 expression. Superior progression-free survival (PFS) was seen after EGFR-TKIs therapy in patients with pTyr1068 expression compared to pTyr1068 negative ones (median PFS 7.0 months vs. 1.2 months, P < 0.001). Inversely, patients with pTyr1173 had a shorter PFS (4.8 months VS. 7.7 months, P = 0.016). In subgroup of patients with wild-type EGFR, pTyr1068 expression positive ones had a significantly prolonged PFS (4.2 months vs.1.2 months P < 0.001) compared with those without pTyr1068 expression. Sixteen patients with both wild-type EGFR and pTyr1068 who responded to EGFR-TKIs had median PFS of 15.6 months (95%CI: 7.28-23.9).ConclusionpTyr1068 may be a predictive biomarker for screening the population for clinical response to EGFR-TKIs treatment; especially for patients with wild-type EGFR.
In the present study, proteins differentially expressed between gastric cancer tissue and para-tumoral normal gastric tissues were screened, and the function of the highly expressed protein c1QTNF6 in gastric carcinoma was investigated. The differential expression of mRNAs extracted from the tumor and adjacent tissues was analyzed using Genechip assay. An AGS si-c1QTNF6 cell line was constructed using shRNA-c1QTNF6 lentivirus. The cell invasion and migration ability of c1QTNF6-knockdown cells were determined by Transwell chamber migration and wound healing assays, respectively. The effects of c1QTNF6 on AGS cell cycle distribution and apoptosis were detected using a FACScan flow cytometer. The results demonstrated that the expression of 109 genes was increased and the expression of 129 was decreased in tumor tissues. Among these genes, the c1QTNF6 gene was highly expressed in tumor tissues and the AGS7901 cell line. c1QTNF6-knockdown decreased the cell growth, and the proliferative and migration ability, as well as increasing the apoptosis of gastric carcinoma cells. In addition, the number of AGS cells in the G2/M phase was significantly increased after 5 days of c1QTNF6-shRNA lentivirus infection. The results of the present study indicated that c1QTNF6 serves an important role in the development of gastric carcinoma. c1QTNF6 is involved in promoting the proliferation and migration, and in reducing the apoptosis of gastric carcinoma cells. These results provided a potential therapeutic target for the treatment of gastric carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.