In recent years, deep learning has been widely applied for mammographic image classification. However, most of the existing methods are based on a single mammography view and cannot sufficiently extract discriminative features, thereby resulting in an unsatisfactory classification accuracy. To solve this problem and improve the mammographic image classification performance, we propose a novel multi-view convolutional neural network (CNN) based on multiple mammography views in this paper. Considering that the images acquired from different perspectives contain different and complementary breast mass information, we modify the CNN architecture to exploit the complementary information from the various views of mammography. The new architecture can extract discriminative features from the mediolateral oblique (MLO) and craniocaudal (CC) views of the mammographic images and can effectively incorporate these features for mammographic images. The dilated convolutional layers enable the feature maps extracted from the multiple breast mass views to capture information from a large ''field of vision''. Moreover, multiscale features are obtained by using the convolutional and dilated convolutions. In addition, we incorporate a penalty term into the cross entropy loss function, which enables the model evolution to reduce the misclassification rate by enhancing the contributions of the samples misclassified in the training process. The proposed method was evaluated and compared with several state-of-the-art methods on the open Digital Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS) datasets. The experimental results show that the proposed method exhibits a better performance than those of the state-of-the-art methods.INDEX TERMS Medical image processing, mammographic image, deep learning, convolutional neural network.
Applying the market tail risk measure proposed by Kelly and Jiang in the China's A-shares market, we find that the monthly market tail risk significantly and negatively predicts the monthly industrial output growth rate up to 1 year. In addition, from July 2007 to June 2019, we find that stocks with a higher tail risk outperform stocks with a lower tail risk by 0.62% (0.30% after risk adjustment) per month. Using
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.