To widen bridges, a usual method is to cast joint connections between new and old bridge decks without traffic interruption. The traffic vibrations have negative influence on the quality of joint connections. Shortening the construction time can alleviate the impact on the traffics, a fast-hardening retarding high-early-strength concrete (FRHC) for the connections is in need. In this study, low-alkalinity sulphoaluminate cement (LASC) concrete was modified to gain these characteristics. Based on FRHC concrete, four slab specimens including a monolithic concrete slab and three joint FRHC slabs were cast to investigate their flexural behaviors. With proper splicing details in joint connections, the joint FRHC specimens behaved approximately similar to the monolithic specimen. Combing the laboratory tests and engineering practice, the newly developed FRHC mixture succeeded in fast-hardening, retarding and high-early strength and the joint connections filled with FRHC have a good flexural performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.